Netherlands Organisation for Scentific Research

New C++ standard

Tentatively called C++0x

¢ Complete draft expected in September 2008
Will probably be introduced 1n 2009, so C++09
Almost 100% compatible with current standard

@ Don’t know exactly what is not compatible

Affects core language and Standard Library

See Wikipedia for detailed info and links

IT-lunch GvD 25-03-2008

(
//[f

Netherlands Organisation for Scentific Research

Language changes

@

@

¢ @ @

@

Rvalue reference (object& &)
@ Discussed later

extern template to avoid auto-instantiation

Intializer lists (only generated by compiler)

SequenceClass(std::initializer list<int> list);
SequenceClass a = {1,2,3,4};

Auto type deduction

for (auto iter=vec.begin(); ...)
int var;

decltype(var) varl;

Range based for loops (a la python)

Lambda expressions and functions

Concepts to define template requirements

Raw strings R”[a string with a \ and "]”

IT-lunch GvD 25-03-2008

Language changes (cont'd)

4 Constructors can call other constructors
4 nullptr instead of 0 or NULL
& 0 and NULL might get deprecated in future standard
4 >>is now valid in templates (no space needed)
& > is angle bracket if last open bracket was an angle
& Not backward compatible for very obscure use of >

Explicit conversion operators
Template typedefs

template<typename T>

& @&

using Registry = std::map<std::string, T>;
Variadic templates (useful for tuple)
Add features for easier garbage collection

Constructors and functions can be forbidden
void f(int);
void f(double) = delete; // no double->int conversion

& @& @

IT-lunch GvD 25-03-2008

Netherlands Organisation for Scentific Research

Standard Library changes

_—
Support for threading
& Also atomic support in language
Class tuple
Hash tables (unordered [multi]set, map)
& Regex (superset of boost)
Smart pointers (from boost)

IT-lunch GvD 25-03-2008

Netherlands Organisation for Scentific Research

Rvalue reference

¢ AKA move semantics
Wi1ll be supported 1n Standard Library

Useful 1n resize of containers

¢ Elements are moved, not copied
o Uses std::move
o Needs constructor and operator= for Class&&

Useful in array arithmetic (for instance a*b)
& Operand can be recognized as temporary and use =*

& Requires four operator® functions instead of one
Array<T> operator™ (Array<T>&& 1, const Array<T>& r)
{ | *=r1; returnl; }

IT-lunch GvD 25-03-2008

Future

4 More multi-threading support
Addition of modules

Exception Specifications might get obsolete
& Herb Sutter says: do not use them

vector<bool>will probably be replaced by a bitset class

and not specialized anymore

IT-lunch GvD 25-03-2008

,
%

