
LOFAR Data Format revisited

In document LOFAR-DATAFORMAT-001 Sydney Cadot describes the requirements for the
LOFAR data format and shows that HDF5 meets about all requirements.
The casacore table system has not been discussed in this document, but meets all
requirements with the exception of:

- fully nestable data types
- binding to Matlab and IDL
- installable on Windows

A few requirements mentioned in the document are debatable, especially the one in 3.4.4:
3.4.2. Accomodating 32-bit file systems.
This is not needed anymore. All operating systems support 64-bit file systems nowadays.
3.4.4 The data format should be optimized for sequential access of large arrays.
This should be the opposite, because different applications (flagging, calibration, imaging)
require very different access patterns to the same data. Instead the data format should allow
for different efficient access patterns.
3.4.5. Pipeline processing.
It is not needed to process data in a sequential way from tape. Possible processing of data in
streaming mode will use very different data formats and is outside the scope of a disk-based
data format discussion.

Furthermore some possible requirements have been omitted:

- support of a boolean data type (in 3.5.1)
- support of concurrent access by multiple processes
- distributed storage. Note that distributed processing is a separate topic
- thread safety

Needs for visibility data access
The main data axes are baseline, time, and frequency. The application defines in which order
the data will be traversed. For example, calibration steps through the data in time order, while
for imaging it is preferable to step by frequency channel. Flagging is usually done per
baseline in a running time/freq window. Plots can be made in all kinds of ways.
The data can be regular, but that is not always the case. Shorter baselines might use longer
time integration.
The file format should be such that data traversal is possible in the various directions. The
access in those directions shoyld be about equally fast.

Brief comparison of HDF5 and CasaTables
Both the Tables and the HDF5 data format are well suited for large collections of structured
data. They share some characteristics, but differ in many others. The main difference is that
HDF5 is hierarchical in nature, while CasaTables is relational.
The 1980’s showed a move from hierarchical data bases to relational data bases because the
latter offer more flexibility. Hierarchical data bases are (too) hard to traverse in a way
different from the hierarchy.

The following table gives a summary of the main differences between the formats and their
(dis)advantages.
HDF5 has a much wider user base. Hence, some more tools are available. However, the
casapy tools like tablebrowser, tableplot, and casaviewer and the Table Query Language
make inspection (and change) of CasaTables very easy.

 HDF5 CasaTables

File structure Usually single file (can be multiple)

Directory of files
Each storage manager is a file

Control how
Data are stored

Little (everything in one file) Each column can be bound to a
storage manager best suited
Storage managers can be loaded
dynamically, so very adaptable

Distributed
access

Yes, through MPI-IO No
Individual tables are needed

Data structure Hierarchical (using groups)
- hierarchy defines traversal

order
Links

Flat (like Relational DB)
- easy to make arbitrary

selection
- easy to traverse in arbitrary

order
File size limit Up to 64 bit file system limits Up to 64 bit file system limits
Attributes Yes

Set per group and dataset
Yes
Hierarchical Keywordset for table
and per column

Data Types All basic types
 Boolean type as byte
Complex types (using compound)
Variable length strings
Fully nestable compound types

N-dim array of all types (also
compound)
 No empty arrays

All basic types
 Boolean type as bit
Native complex types
Variable length strings
Limited compound types via
Records
N-dim array of all types
 No array of compound types

Query, sort Not available in C++
Available in Python (PyTables)

C++ interface
Higher level TaQL (SQL-like)
Can also create, update, delete, and
insert

Concurrent
access

Not supported Multiple readers and writers
supported by means of lock on
entire table

Thread safe Yes, if built so No
Python pyhdf5 gives access to hdf5 API

Several derived products in Python
(e.g. PyTables, pydal)

pyrap gives read and write access to
all data
pydal

Tools Several tools
e.g. h5dump for a simple dump
 h5view for view, plot, and edit

Tablebrowser for view, plot, and
edit
Tableplot for arbitrary xy-plots
(part of casapy, not casacore)
TaQL

Performance Depends heavily on data accessed
Raw data arrays 40 MB/sec
Fast access in all array directions if
tiled correctly and cache setup well
However, very slow when retrieving
smallish data sizes (e.g. lines)

Depends heavily on data accessed
Raw data arrays 40 MB/sec
Fast access in all array directions if
tiled correctly

Array tiling Chunked (tiled) storage per array
Tile cache for per data set
(needs reopen to change cache size)

No info about cache behaviour
h5repack can retile (makes copy)

Tiled storage per array across rows
Fully controllable tile cache per
array
Automatic cache setting for an
access pattern
Full info about cache behaviour
tablecopy can retile

Array slicing Yes Yes
Compression Yes

szip, bzip
Scaling of float to short

Yes
IncrementalStMan (only stores
differences)
Virtual Storage Managers to scale
e.g. float to short

Virtual column Not supported A data manager can be virtual
(e.g. VirtualTaQLColumn)

Data/Storage
Managers

Only HDF5 defined storage
managers

Three predefined storage managers
Virtual columns
New storage managers possible and
are automatically loaded as needed

Units and
Coordinates

Not supported Fully supported
Units also supported in TaQL

Support HDF5 support group and forum are
very responsive
Only serious bug fixing
New developments only if paying

Very good local knowledge

Platforms UNIX, MacOS-X, Windows UNIX, MacOS-X
Language C, limited C++, Python, Matlab,

IDL
C++, Python

Use Wide-spread Limited
Documentation Quite extensive, but not always clear Good class documentation

Some notes
Robustness Very robust

Very small chance of file corruption
in case of machine crash

Very robust
Very small chance of file corruption
when writing and machine crashes

Disk space
usage

Updating compressed datasets can
cause waste of disk space

Resizing an array (making bigger)
can cause waste of disk space

Data deletion Attributes can be deleted
Datasets cannot be deleted

Columns can be deleted
Rows can be deleted depending on
storage manager

Examples of CasaTables flexibility:

- Peter Fridman can access the table file containing the DATA directly in his RFI
software.

- It is straightforward to store the DATA and FLAG as a normal file (outside table
system) and access it later as a table column using a dynamically loaded storage
manager (like LofarStMan).

- FLAG can be a virtual column on top of LOFAR_FLAGS which can be an Int or so
to have multiple flags per visibility.

