
Dwingeloo, 25-Aug-2015 - 1 - LOFAR synthesis data handling: TaQL 

LOFAR synthesis data handling 
TaQL 

Ger van Diepen 
ASTRON 

 
diepen astron nl 

 
astron.nl/~gvd/tutorial4.pdf 

 



Dwingeloo, 25-Aug-2015 - 2 - LOFAR synthesis data handling: TaQL 

Why TaQL? 

One often wants to: 
-  Look at values in a MeasurementSet or other Casacore tables 
-  Check if data are correct 
-  Make small modifications 
-  Do some calculations 
-  Convert values to another reference frame or to readable text  

Can be done in a Python script using pyrap.tables 
-  Can take some effort 
 
Can often be done more easily using TaQL (Table Query Language) 
-  Very similar to SQL 
-  Easy to use for simple problems 

 (although some people think it is very complex) 
-  Can handle complex problems, but requires some more knowledge (and thought) 

 you have to know the function names, etc. 

Fully described in http://casacore.github.io/casacore-notes/199.html  
 



Dwingeloo, 25-Aug-2015 - 3 - LOFAR synthesis data handling: TaQL 

MeasurementSet 
A structured set of tables 
-  Main table contains the visibility data, flags, UVW, weights, … 

A collection of rows/columns where each row contains the data of a single baseline and timeslot (and band/field): 
-  DATA   2D Complex array (nfreq*4); visibilities (XX,XY,YX,YY) 
-  FLAG   2D Bool array; flag per visibility (True=bad) 
-  UVW   U,V,W coordinate (meters) 
-  WEIGHT_SPECTRUM  weight per visibility 
-  TIME   time in MJD (seconds) 
-  ANTENNA1   first station of baseline (index in ANTENNA subtable) 
-  ANTENNA2   second station of baseline 
-  Several more columns 

-  Subtables contain meta data 
-  ANTENNA 

-  NAME, POSITION, … 
-  FIELD 

-  PHASE_DIR, … 

-  SPECTRAL_WINDOW 
-  REF_FREQUENCY, CHAN_FREQ, CHAN_WIDTH, … 

-  Several more subtables 

Show MS info, columns and subtables: 
 showtable in=a.ms dm=f                  # showtable –h for help!
!msoverview in=a.ms                      # msoverview –h for help!

See http://casacore.github.io/casacore-notes/229.html for details 



Dwingeloo, 25-Aug-2015 - 4 - LOFAR synthesis data handling: TaQL 

showtable in=a.ms dm=f 
Structure of table /Users/diepen/data/LOFAR_L33277_SB010_uv.MS!
------------------ Measurement Set!

10353 rows, 23 columns (using 1 data managers)!
!

  UVW             double   shape=[3] unit=[m,m,m] measure=uvw,J2000 directly stored!
  FLAG            Bool     ndim=2!

  FLAG_CATEGORY   Bool     ndim=3!
  WEIGHT          float    ndim=1!

  SIGMA           float    ndim=1!
  ANTENNA1        Int      scalar!

  ANTENNA2        Int      scalar!
  ARRAY_ID        Int      scalar!

  DATA_DESC_ID    Int      scalar!
  EXPOSURE        double   scalar unit=[s]!

  FEED1           Int      scalar!
  FEED2           Int      scalar!

  FIELD_ID        Int      scalar!
  FLAG_ROW        Bool     scalar!

  INTERVAL        double   scalar unit=[s]!
  OBSERVATION_ID  Int      scalar!

  PROCESSOR_ID    Int      scalar!

  SCAN_NUMBER     Int      scalar!
  STATE_ID        Int      scalar!

  TIME            double   scalar unit=[s] measure=epoch,UTC!
  TIME_CENTROID   double   scalar unit=[s] measure=epoch,UTC!

  DATA            Complex  ndim=2!
  WEIGHT_SPECTRUM float    ndim=2!

!
 SubTables:!

    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/ANTENNA!
    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/DATA_DESCRIPTION!

    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/FEED!
    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/FLAG_CMD!

    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/FIELD!
    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/HISTORY!

    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/OBSERVATION!
    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/POINTING!

    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/POLARIZATION!
    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/PROCESSOR!

    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/SPECTRAL_WINDOW!
    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/STATE!

    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/LOFAR_STATION!
    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/LOFAR_ANTENNA_FIELD!

    /Users/diepen/data/LOFAR_L33277_SB010_uv.MS/LOFAR_ELEMENT_FAILURE!
!



Dwingeloo, 25-Aug-2015 - 5 - LOFAR synthesis data handling: TaQL 

Some basic examples 
     taql ‘select from a.ms where ANTENNA1!=ANTENNA2 giving cross.ms’!
     taql ‘select from a.ms where ANTENNA1!=ANTENNA2 giving cross.ms as plain’!

Select the cross-correlations and store the result in another table. 
The first one as a RefTable (takes < 1 second); the second one makes a true copy (much slower). 
 

 taql ‘SELECT * FROM my.ms OFFSET 1e20’!
 Do an empty selection to show the column names only. 
 

 taql ‘select INTERVAL from my.ms limit 1’!
Show the integration time (is constant in a LOFAR MeasurementSet) 
    select result of 1 rows!
1 selected columns:  INTERVAL!

4.00556!

!
    taql ‘select from my.ms orderby unique TIME’!
    taql ‘select from my.ms orderby unique ANTENNA1,ANTENNA2’!
    taql ‘select gcount() from my.ms’!

Show the number of time slots, baselines, and total number of rows. 
 
    taql ‘select ANTENNA1,ANTENNA2,UVW from my.ms!
          orderby descending sumsqr(UVW[:2] limit 1’!

Show the stations forming the longest baseline. Later we’ll see how to get the names of the stations. 
 
    taql 'insert into a.ms/STATE set SIG=True, REF=False, CAL=0, LOAD=0,!
            SUB_SCAN=0, OBS_MODE=“”, FLAG_ROW=False!
Add a row to the STATE subtable and write the given column values in it.  



Dwingeloo, 25-Aug-2015 - 6 - LOFAR synthesis data handling: TaQL 

TaQL commands 

SQL-like data selection and manipulation 
   can often replace a python script 

•  SELECT!
–  select columns, select rows, sort rows 

•  UPDATE!
–  update data in one or more rows and columns!

•  INSERT!
–  add rows and fill them 

•  DELETE!
–  delete rows!

•  CREATE TABLE!
–  create a new table 

•  CALC!
–  calculate an expression, possibly using table data!

•  COUNT 
–  count number of rows for table subsets (e.g., per baseline) 



Dwingeloo, 25-Aug-2015 - 7 - LOFAR synthesis data handling: TaQL 

SELECT 
Selects rows and /or columns and creates a new table 
-  result is normally a so-called RefTable (references the selection in the original table)  
-  Most parts are executed in the order given below, but SELECT after GROUPBY 

SELECT columns 
   columns or expressions to select (default all) 

FROM tables 
   the input table(s) to use 

WHERE expression 
   which rows to select (default all); must result in bool scalar 

GROUPBY columns 
   scalar columns or expressions to group and aggregate on 

HAVING expression 
   groups to select 

ORDERBY columns 
   sort the result on scalar columns or expressions 

LIMIT N 
   maximum number of result rows (default all) (<0 is from end) 

OFFSET M 
   skip first M result rows (default 0); useful with ORDERBY (<0 is from end) 

GIVING table 
   persistent output table (default none) 

 



Dwingeloo, 25-Aug-2015 - 8 - LOFAR synthesis data handling: TaQL 

TaQL functionality 

•  Support of sets/arrays and many array functions 
•  Support of glob patterns and regex 
•  Support of units 
•  Support of date/time (UTC) 
•  Support of cone search 
•  Support of user defined functions (measure handling) 
•  Advanced interval support 
•  Support of nested queries 
•  Aggregation (GROUPBY, HAVING) 
•  Limited joins (only implicit equi-join on rownumber or id) 
•  Case-insensitive (except column names and string constants) 

Looks a bit overwhelming, but simple selections can be expressed simply, 
especially in pyrap.tables 

May require careful thinking how to express a query 
Some SQL knowledge is advantageous 
See http://casacore.github.io/casacore-notes/199.html 



Dwingeloo, 25-Aug-2015 - 9 - LOFAR synthesis data handling: TaQL 

Where can TaQL be used? 

•  in C++ casacore using function tableCommand 
•  in pyrap using function taql 

–  indirectly in functions t.query, t.sort, t.select, and t.calc 

•  on command line using the program taql 
–  use ‘taql -h’ to see how to use it 
–  can also be used interactively (with command recall) 

•  Most important commands: 
–  select 
–  update 
–  insert 
–  calc 



Dwingeloo, 25-Aug-2015 - 10 - LOFAR synthesis data handling: TaQL 

TaQL styles 

TaQL indexing can have different styles. 
The standard way resembles Python 
 
-  array indices and row numbers start counting at 0 
-  end is exclusive 

-  [0:5]        is   [0,1,2,3,4] 
-  [1:3:0.5]  is   [1., 1.5, 2., 2.5] 

-  array axes order is C-style (row major) 
-  first axis varies slowest 
-  e.g., DATA column in an MS has axes [freq,pol] 

Opposite is the old Glish style. 



Dwingeloo, 25-Aug-2015 - 11 - LOFAR synthesis data handling: TaQL 

Simple queries 

Simple queries can be expressed simply using some pyrap.tables functions. 
After 

 !t = pt.table(‘my.ms’)	  
!
!

! !t1 = t.query (‘ANTENNA1 = ANTENNA2’)       # select auto-correlations!
results in!

! !t1 = taql(‘select from my.ms where ANTENNA1 = ANTENNA2’)!
  in fact, in:!

! !t1 = taql(‘select from $1 where ANTENNA1 = ANTENNA2’, t)!
!
!

! !t2 = t1.sort (‘TIME’) ! !  # sort in time!
results in 

! !t2 = taql(‘select from $1 orderby TIME’, t1)!
!
!

! !t3 = t2.select (‘ANTENNA1, ANTENNA2’) !  # select a few columns!
results in!

! !t3 = taql(‘select ANTENNA1, ANTENNA2 from $1’, t2)!
!
Combine as: 

! !t3 = t.query (‘ANTENNA1=ANTENNA2’, sortlist=‘TIME’, columns=‘ANTENNA1,ANTENNA2’)!
results in!

! !t3 = taql(‘select ANTENNA1,ANTENNA2 from $1 where ANTENNA1=ANTENNA2 orderby TIME’, t)!

!



Dwingeloo, 25-Aug-2015 - 12 - LOFAR synthesis data handling: TaQL 

Data types 

•  bool   T, F, True, or False 
•  int64 
•  double   also sexagesimal format 

! ! ! !    12h34m56.78!
! ! ! !    12d34m56.78 or 12.34.56.78!

•  dcomplex   1 + 2i   (or 2j)    NB. normal addition 
! ! ! !    3*2+2i == 6+2i   not 6+6i!

•  string   in single and/or double quotes 
            ‘a”b’”a’c”   means   a”ba’c 

•  datetime   10-Nov-2010/12:34:23.98 
•  regex   perl-like      m/CS.*/         p/CS*/ 

Both scalars and arrays of these data types (NOT an array of regex) 
 
A table column or keyword can have any table data type 



Dwingeloo, 25-Aug-2015 - 13 - LOFAR synthesis data handling: TaQL 

Operators 

On scalar and/or array; in order of precedence: 
   **  ! ! !power!
  !  ~  +   -       !unary operators;  ~ is bitwise complement!
  *  /  //  %  ! !// is integer division result;   % is modulo;   1./2=0.5    1.//2=0!
  +  -  ! ! !+ is also string concatenation!
  &  ! ! !bitwise and!
  ^  ! ! !bitwise xor 
  |  ! ! !bitwise or 
  ==  !=  >  >=  <  <= !normal comparison 
  ~=  !~= ! !about equal (near function with 1e-5 tolerance)!
  IN INCONE BETWEEN EXISTS!
  ~  !~  LIKE ! !pattern matching 
  &&  ! ! !logical and 
  || ! ! !logical or 
!
Operator names are case-insensitive. For SQL compliancy some operators have a synonym. 
  ==     =  !
  !=     <>  !
  &&     AND  !
  ||     OR  !
  !      NOT  !
  ^      XOR !



Dwingeloo, 25-Aug-2015 - 14 - LOFAR synthesis data handling: TaQL 

Functions 
•  > 160 standard functions 
•  Mathematical 

•  pi, e, c, sqrt, sin, cos, asin, sinh, exp, pow, log, ... 

•  Comparison  
•  near (operator ~=), nearabs, isnan, isinf, isfinite 

•  String, Regex 
•  Date/time 
•  Array reduction 

•  mean, min, sumsqr, median, fractile, ... 
•  plural form (mins, …) for reduction of specific axes (e.g. per line) 
•  sliding and boxed array functions 

•  Cone search 
•  Aggregation 

•  gcount, gsum, gmean, gaggr, … 

•  Miscellaneous 
•  angdist, rand 
•  iif (condition, val1, val2)     (like ternary ?: in C) 
•  Type conversion and string formatting 

•  User defined 
–  xxx.func 
–  are taken from shared library libcasa_xxx.so or libxxx.so 



Dwingeloo, 25-Aug-2015 - 15 - LOFAR synthesis data handling: TaQL 

User defined functions 
•  derivedmscal library for data in an MS (or CASA calibration table) 

–  derived MS quantities like hourangle, AzEl, LAST 
•  give hourangle of first station 
! !mscal.ha1()!

–  by default PHASE_DIR in FIELD subtable is used 
 can give another direction 

•  give azimuth/elevation of SUN for this MS 
! !mscal.azel(‘SUN’)!

–  CASA selection 
 mscal.baseline(“CS*&RS*”)!

–  get info from subtables (only in casacore trunk) 
mscal.ant1name()!
mscal.spwcol(‘REF_FREQUENCY’)!

•  meas library for conversion of measures 
–  directions, epoch, and positions (knows standard ones) 

•  get ITRF position of LOFAR 
! !meas.itrf(‘LOFAR’)!

•  get J2000 direction of SUN for WSRT at current time 
! !meas.j2000(‘SUN’, datetime(), ‘WSRT’)!

•  get apparent direction of CygA for next 31 days 
! !meas.app(‘cyga’, date()+[0:31], ‘LOFAR’)!



Dwingeloo, 25-Aug-2015 - 16 - LOFAR synthesis data handling: TaQL 

Units 

Units are given implicitly or explicitly and converted if needed. 
 
-  A table column can have a unit 
-  Some functions result in a unit (e.g. asin results in unit rad) 
-  A sexagesimal constant has a unit (rad) 
-  A unit can be given after an expression. Conversion done if needed. 

 Use quotes if a composite unit is used (e.g.  ‘km/s’) 
 
12 s ! ! !12 seconds!
12 s + 1 h ! !3612 seconds!
1 h + 12 s ! !1.00333 hour!
(174 lb)kg ! !78.9251 kg !(in case you use an American scale :-) 
(1 'm/s')'km/h’ ! !3.6 km/h!
12h34m56.78 ! !3.29407 rad!
12 m < 1 km ! !True!
sin(45 deg) ! !0.707107!
!
These expressions can be given directly in taql program (assumes CALC if no command) 



Dwingeloo, 25-Aug-2015 - 17 - LOFAR synthesis data handling: TaQL 

Regex 

TaQL has rich support for pattern/regex matching (perl-like) 
 
NAME ~ p/CS*/ ! !match a glob pattern (as filenames in bash/csh)!
NAME ~ p/CS*/i ! !same, but case-insensitive!

NAME !~ p/CS*/ ! !true if not matching the pattern!
!
NAME ~ f/CS.*/ ! !match an extended regular expression!
!
NAME ~ m/CS/ ! !true if part of NAME matches the regex (a la perl)!
NAME ~ f/.*CS.*/! !is the same!

!
NAME like ‘CS%’ ! !SQL style pattern matching (also: not like)!
!
NAME = PATTERN(‘CS*’) !glob pattern using a function (also !=)!
NAME = REGEX(‘CS.*’)!
NAME = SQLPATTERN(‘CS%’)!

!

Advanced!
NAME ~ d/CS001/1! !string distance (i.e., similarity) 



Dwingeloo, 25-Aug-2015 - 18 - LOFAR synthesis data handling: TaQL 

Arrays 

•  Arrays can arise in several ways: 
-  a table column containing arrays 
-  a set results in a 1-dim array 

        [1:4]     [‘str1’, ‘str2’]!

-  function array constructs an N-dim array 
  array([1:5], [3,4])! !array with shape [3,4] filled with [1,2,3,4] in each row 
     array(DATA, product(shape(DATA))))   reshape to a vector 

•  Slicing is possible as in numpy (no negative values) 
  axes can be omitted (yields full axis) 

DATA[,0]   only take XX correlation from MS 
DATA[::2,]   take every other channel and all correlations 

•  Full array arithmetic (array-array, array-scalar, scalar-array) 
-  all operators, many functions (sin, etc.) available; they work element-wise 
-  shapes have to match (no broadcasting like in numpy) 

•  Reduction functions (also partial for one or more axes) 
•  min, median, any, all, ntrue, ..., mins, medians, anys, alls, ntrues, … 

•  Sliding (running) functions 
•  runningmin, runningmedian, … 

•  Boxed functions 
•  boxedmin, boxedmedian, … 



Dwingeloo, 25-Aug-2015 - 19 - LOFAR synthesis data handling: TaQL 

Sets and intervals 

•  The IN operator can be used to test on sets or intervals (or arrays) 
–  Interval (numeric, date/time) 

! !date(TIME) in 12Jul2010 =:= 12Jul2011!
!   -   read    ‘x in start=:=end’    as    ‘start<=x<=end’ 
   -   = means closed interval side; use < for open side 

  -   multiple intervals and/or values can be given in a set 
–  Set of values (numeric, string, date/time, interval) 

! !ANTENNA1 in [1,2,3,4]     same as     ANTENNA1 IN [1:5]!
!

 datetime() in [12Nov2014 =:< 12Nov2015]! results in T!
!datetime() in [12Nov2014 : 12Nov2015] ! results in F  (unless exactly at midnight) 
!date() in [12Nov2014 : 12Nov2015] ! results in T   

  

•  Left side can be a set or array; result is similarly shaped Bool array 
   [1,2] in [2,3,4] results in [F,T] 

•  Right side can be a scalar; then IN is the same as == 
v in 1      is same as     v==1!
 

•  A subquery results in a set (discrete values or intervals) 
! !ANTENNA1 in [select rowid() from ::ANTENNA where NAME ~ p/CS*/]!
! !TIME in [select from ::WEATHER where WIND_SPEED>10 giving!
! ! !                [TIME-INTERVAL/2 =:= TIME+INTERVAL/2]]!



Dwingeloo, 25-Aug-2015 - 20 - LOFAR synthesis data handling: TaQL 

Grouping and Aggregation 

•  Use to get aggregated information per group (e.g., baseline) 
groupby ANTENNA1,ANTENNA2!

•  Normally used with aggregation functions in SELECT 
 select gntrue(FLAG) from my.ms!
!select gntrue(FLAG) from my.ms groupby TIME!

•  Standard aggregation functions (all start with g) 
gmin, gmax, gsum, gsumsqr, gmean, gstddev, gmedian, gfractile, gntrue, … 

•  Special aggregation functions 
gfirst, glast  value in first/last row in group 
gaggr   concatenate all rows of group into single array 
     maxs(gaggr(abs(DATA)), 0,1)   max amplitude per pol 
 

•  HAVING can be used to select groups 
  select gntrue(FLAG) as NT from my.ms groupby TIME having NT>0!
Only selects groups where flags are set 



Dwingeloo, 25-Aug-2015 - 21 - LOFAR synthesis data handling: TaQL 

UPDATE 

Updates one or more columns in a table for each matching row 
 
UPDATE table 

   The table to update 
SET column=expression, column=expression, ... 

   The columns to update and their new values 
   If column contains an array, a slice can be given 
   A scalar can be assigned to an array (fills entire array) 

FROM table(s) 
   Possible other input tables to use 

WHERE expression 
   Which rows to update (default all); must result in bool scalar 

ORDERBY columns 
   Sort scalar columns or expressions (default no sorting) 

LIMIT N 
   Maximum number of matching rows to update (default all) 

OFFSET M 
   Skip first M matching rows (default 0); useful with ORDERBY 

 
For example, set entire FLAG column to False 

 UPDATE your.ms SET FLAG=False!



Dwingeloo, 25-Aug-2015 - 22 - LOFAR synthesis data handling: TaQL 

CALC 

Calculates an expression; if a table is given, it is calculated for each matching row 

CALC expression 
   the expression to calculate 

FROM tables 
   the input table(s) to use (default none) 

WHERE expression 
   which rows to use (default all); must result in bool scalar 

ORDERBY columns 
   sort scalar columns or expressions (default no sorting) 

LIMIT N 
   maximum number of matching rows to update (default all) 

OFFSET M 
   skip first M matching rows (default 0); useful with ORDERBY 

 
For example: 

 CALC ctod(TIME) from your.MS orderby unique TIME          # format (unique) times 



Dwingeloo, 25-Aug-2015 - 23 - LOFAR synthesis data handling: TaQL 

Pretty printing using TaQL 

•  By default program taql pretty prints times 
! !taql 'select TIME from ~/GER1.MS orderby unique TIME limit 2'!

    !    select result of 2 rows!
! !1 selected columns:  TIME!
! !28-May-2001/02:26:55.000!
! !28-May-2001/02:27:05.000!

•  and positions 
! !taql 'select NAME,POSITION from ~/GER1.MS::ANTENNA’!
! !    select result of 14 rows!
! !2 selected columns:  NAME POSITION!
! !RT0     [3.82876e+06 m, 442449 m, 5.06492e+06 m]!
! !RT1     [3.82875e+06 m, 442592 m, 5.06492e+06 m]!

•  In python script use function ctod 
! !# Pretty print TIME like ‘2001/05/28/02:29:45.000’!
! !# Note the use of $t1 in the TaQL command;!
! !# The function taql substitutes python variables given by $varname!
! !t1 = t.sort (‘unique desc TIME’, limit=18)!
! !pt.taql('calc ctod([select TIME from $t1])')!

!
! !# or by passing the times as a python variable; need to tell unit is s!
! !times = t1.getcol(‘TIME’)!
! !pt.taql(‘calc ctod($times s)’)!

!
! !# or the best way  (cdatetime is a synonym for ctod)!
! !t1.calc (‘cdatetime(TIME)’)!



Dwingeloo, 25-Aug-2015 - 24 - LOFAR synthesis data handling: TaQL 

Pretty printing using str(ing) 

The function str can be used 
-  Converts values to strings 
-  Optional C-style format string or C++ width.prec 
-  Can also format date/time and angle using ‘or-ed’ format 

strings (as defined in class MVTime) and optional width 
 
str(2rad, ‘angle’) ! ! !# +114.35.30!

str(2rad, 'angle|10') ! !# +114.35.29.6125!
str(4Mar1953, 'DMY|DAY|NO_TIME’) !# Wed-04-Mar-1953!
str(1+2i, ’%f + %fj’) ! !# 1.000000 + 2.000000j!
str(123, ’value=%08d’) ! !# value=00000123!

str(‘abcdef’, 4)                        # abcd!

 



Dwingeloo, 25-Aug-2015 - 25 - LOFAR synthesis data handling: TaQL 

Selection examples 

Select all cross-correlations and save result (as a RefTable) 
!select from your.ms where ANTENNA1 != ANTENNA2 giving your_cross.ms!

!
Select all cross-correlations and save result (as a PlainTable, thus deep copy); much slower 

!select from your.ms where ANTENNA1 != ANTENNA2 giving your_cross.ms as plain!
!
Select all rows where ROW_FLAG does not match FLAG 

!select from your.ms where ROW_FLAG != all(FLAG)!
!
Select all rows where some, but not all correlations in a channel are flagged. 
Note: ntrues determines #flags per channel; shape(FLAG) gives [nchan,ncorr]; true result if true for any channel!

!select from your.ms where any(ntrues(FLAG,1) in [1:shape(FLAG)[1]])!
!
Select some specific baselines (2-3, 2-4, 4-5, and 5-6) 
Note: for a row containing e.g. baseline 2-5 you get [TTFF]&&[FFTF] è [FFFF] 

!select from your.ms where any(ANTENNA1=[2,2,4,5] && ANTENNA2=[3,4,5,6])!
!
Get the age (in days);  could be used to test if an observation is old enough (note: date() is today) 
Note use of :: in subtable name 

!calc date() - 4Mar1953!
!calc 20Jun2011 - date(TIME_RANGE[0]) from your.ms::OBSERVATION!

!
Get unique times 

!select from my.ms orderby unique TIME!
!select unique TIME from my.ms!

 



Dwingeloo, 25-Aug-2015 - 26 - LOFAR synthesis data handling: TaQL 

More selection examples 

Select baselines (auto and cross) between LOFAR core and remote stations only 
Note: this can also be achieved using the program msselect !! 

 select from my.ms where mscal.baseline(‘[CR]S*&&’)   # CASA selection syntax!
!select from my.ms where all([ANTENNA1,ANTENNA2] in!

                                [select rowid() from ::ANTENNA where NAME ~ p/[CR]S*/])!
 
 
 
Select baselines containing international stations 

 select from my.ms where mscal.baseline(‘^[CR]S*&&*’)!
 
 
 
Regression test; check if DATA column is as expected (NaNs and rounding errors are possible) 
Note:    t1.DATA ~= t2.DATA    is the same as       near(t1.DATA, t2.DATA, 1e-5)!

 select from test.ms t1, ref.ms t2 where!
        not all((isnan(t1.DATA) and isnan(t2.DATA)) or t1.DATA ~= t2.DATA)!
!



Dwingeloo, 25-Aug-2015 - 27 - LOFAR synthesis data handling: TaQL 

More selection examples 

Show short baselines (< 200 m) with the antenna names (with some kind of join using indexing) 
 
  taql ‘select ANTENNA1, ANTENNA2, sqrt(sumsqr(UVW[:2])),!
           [select NAME from ::ANTENNA][ANTENNA1] as ANTNAME1,!
           [select NAME from ::ANTENNA][ANTENNA2] as ANTNAME2!
    from ~/DATA/GER.MS where sumsqr(UVW[:2]) < 200*200 orderby unique ANTENNA1,ANTENNA2’!
!
5 selected columns:  ANTENNA1 ANTENNA2 Col_3 ANTNAME1 ANTNAME2!
0 !1 !73.9286 !RT0 !RT1!
0 !2 !147.859 !RT0 !RT2!
1 !2 !73.8642 !RT1 !RT2!
1  3 !147.723 !RT1 !RT3!

!
!
With newest version of casacore (use LofIm) 
!
  taql ‘select ANTENNA1, ANTENNA2, sqrt(sumsqr(UVW[:2])),!
           mscal.ant1name() as ANTNAME1,!
           mscal.ant2name() as ANTNAME2!
    from ~/DATA/GER.MS where sumsqr(UVW[:2]) < 200*200 orderby unique ANTENNA1,ANTENNA2’!
!
!



Dwingeloo, 25-Aug-2015 - 28 - LOFAR synthesis data handling: TaQL 

Update examples 
Clear all flags in a MeasurementSet or set the flag if corresponding DATA is invalid 

!update your.ms set FLAG=False, ROW_FLAG=False!
!update your.ms set FLAG=!isfinite(DATA), ROW_FLAG=all(FLAG) # uses new FLAG values!!!

!

Update the MOUNT in the ANTENNA table 
!update your.ms/ANTENNA set MOUNT=‘X-Y’!

 
Put CORRECTED_DATA into the DATA column 

!update my.ms set DATA = CORRECTED_DATA!
!
Put CORRECTED_DATA from that MS into DATA column of this MS 
It requires that both tables have the same number of rows 

!update this.ms, that.ms t2 set DATA = t2.CORRECTED_DATA!
 
Subtract background noise from an image using the median in a 51x51 box around each pixel 
(updates the image, so one should have made a copy of my.img) 

 update my.img set map = map - runningmedian(map, 25, 25)!
!

Flag XX data based on a simple median filter (per row); if set, current flag is kept 
!update my.ms set FLAG[,0]=FLAG[,0] || amplitude(DATA[,0]) > ! !

!3*median(amplitude(DATA[,0])) where isdefined(DATA)!

 
Add a line to the HISTORY table of a MeasurementSet (converts the MJD time automatically to sec) 

 insert into my.ms/HISTORY (TIME,MESSAGE) values (mjd(), “historystring”)!



Dwingeloo, 25-Aug-2015 - 29 - LOFAR synthesis data handling: TaQL 

Calculation examples 
Count all flags in an MS (uses nested query) 

!CALC sum([select ntrue(FLAG) from my.ms])!
!
Get percentage of unflagged data in an MS 

!CALC sum([select nfalse(FLAG) from my.ms]) * 100. /!
         sum([select nelements(FLAG) from my.ms])!
!

Get the hourangle of the first station (creates a new PlainTable, not RefTable because of expression in columns)!
!SELECT TIME, ANTENNA1, ANTENNA2,  mscal.ha1() as HA1 from my.ms giving newtable!

!
The same, but return it a as an array 

!CALC mscal.ha1() from my.ms orderby unique TIME,ANTENNA1!
!
Angular distance between observation’s phase reference direction(s) and a given direction 
Do the same for CygA!

!CALC angdist([-3h45m34.95, 10d12m42.5], PHASE_DIR[0,]) FROM your.ms/FIELD!
!CALC angdist(meas.j2000(‘CygA’), PHASE_DIR[0,]) FROM your.ms/FIELD!

!

Angular distance (in radians) between apparent positions of sun and moon at LOFAR core in coming month 
(sun and moon are close on 5-Dec, so it’ll be dark for poor Sinterklaas and Zwarte Piet) 
    CALC angdist(meas.app('SUN', 26Nov2013+[0:31], 'LOFAR'),!
                 meas.app('MOON’,26Nov2013+[0:31], 'LOFAR'))!

![1.53393, 1.33603, 1.13221, 0.921343, 0.702766, 0.476634, 0.244891, 0.0500374, 0.24891, 0.490751, 
0.732487, 0.970688, 1.20361, 1.43043, 1.65101, 1.86568, 2.07504, 2.27972, 2.48028, 2.67696, 2.86884, 
3.04371, 3.00427, 2.82496, 2.63905, 2.45208, 2.26415, 2.07456, 1.88225, 1.68595, 1.48433]!



Dwingeloo, 25-Aug-2015 - 30 - LOFAR synthesis data handling: TaQL 

uvflux example 
The Miriad program uvflux estimates the source I flux density and its standard deviation at the phase center without 

having to make an image. 
A single, not too complicated TaQL command (courtesy Dijkema, Heald) provides the same functionality. 
 
4.    select gstddev(SUMMED) as STDVALS,!
4.           gmean(SUMMED) as MEANVALS,!
4.           gcount(SUMMED) as NVALS!

3.    from (select gmean(!
1.                  sum(iif(FLAG[,0:4:3], 0, abs(DATA[,0:4:3]))) / nfalse(FLAG[,::3])!
3.                 ) as SUMMED!

            from ~/data/GER.MS!
2.          where mscal.baseline(‘5km~10km’) && !all(FLAG)!
3.          groupby TIME)!
 
A subquery is made to get the mean I flux (= 0.5*(XX+YY)) per time slot in the following way. 
1. It first gets the mean of all channels for each baseline. Note that it uses sum/n to ignore flagged visibilities. The iif 

function tells to use 0 for them. Also note that XX is the 1st, YY the 4th polarisation, hence [0:4:3] (or [::3]) indexes 
these polarisations. 

    Once masked arrays are supported by TaQL, it could be written as:   mean(DATA[,::3][FLAG[,::3]])!
2. It only uses the baselines with lengths between 5 and 10 km where not all visibilities are flagged.  
3. Thereafter the average flux per time slot is determined in the subquery using the gmean aggregation and GROUPBY 

functionality. The result is called SUMMED. 
4. Finally, the outer query uses aggregate functions to calculate the overall mean, standard deviation, and number of 

time slots. The final result is a table with 1 row and 3 columns. 
 



Dwingeloo, 25-Aug-2015 - 31 - LOFAR synthesis data handling: TaQL 

Check StationAdder result 

The StationAdder step in DPPP forms a new station ST001. It forms new baselines ST001 with all non-core stations by 
adding data of the baselines of non-core stations with core stations. 
Per timeslot we want to check for each new baseline if the resulting DATA and UVW are as expected. 
 
NewData = sum(OldData * Weight) / sum(Weight)                 # only use unflagged data points 
NewUVW = sum(UVW * SumWeight)) / sum(SumWeight))    # SumWeight is sum of weights of all channels 
 
1. In a LOFAR MS non-core/core baselines have ANTENNA1 as core and ANTENNA2 as non-core!! 
2. Per time slot and non-core station we have to combine (group) the data -> use GROUPBY 

 select from a.ms groupby TIME,ANTENNA2!
3. Only use unflagged data -> use 0 for flagged data points 

 iif(FLAG, 0, DATA)!
      upcoming version of TaQL will support masked arrays -> DATA[FLAG] 
4. Use the non-core/core baselines -> selection of such baselines most easily done with CASA syntax 

 where mscal.baseline(“^CS*&CS*”)!
5. Calculate new data by aggregating the data per group and summing over the first axis (i.e., baselines) 

 sums(gaggr(DATA*WEIGHT_SPECTRUM), 0) / sums(gaggr(WEIGHT_SPECTRUM), 0)!
6. Combine it all, write the result in an output table, and call the output column NDATA 
       select sums(gaggr(iif(FLAG,0,DATA)*WEIGHT_SPECTRUM), 0) /                  ! !

! !sums(gaggr(iif(FLAG,0,WEIGHT_SPECTRUM)), 0) as NDATA!
       from a.ms where mscal.baseline(“^CS*&CS*)!

       groupby TIME,ANTENNA2 giving avg.data as plain!

7. Compare with StationAdder output (thus subset containing ST001 baselines) 
       select from avg.data t1, [select from a.ms where mscal.baseline(“ST001&*”] t2!

       where not all (t1.NDATA ~= t2.DATA)!



Dwingeloo, 25-Aug-2015 - 32 - LOFAR synthesis data handling: TaQL 

Check StationAdder’s UVW 
The following taql command calculates the average UVW per new baseline taking the data flags into account. 
It was used by Leah Morabito to visually check DPPP’s StationAdder results. If the results are stored in a table, another 
TaQL command could be used to compare with the StationAdder output. 
 
It resembles the previous uvflux example. It uses a subquery to calculate intermediate results. 
It also resembles numpy with its whole and partial array operations. 
This query takes advantage of the knowledge that in a LOFAR MS the core stations are in ANTENNA1 for the baselines 
between core and non-core baselines, thus it can sum over ANTENNA2. 
 
     select ctod(TIME), ANTENNA2,!

4. sums(gaggr(UVW*SUMW),0) / gsum(SUMW) as UVW!
1.    from [select TIME,UVW,ANTENNA2,!
3.                 sum(iif(FLAG,0,WEIGHT_SPECTRUM)) as SUMW!

1.          from a.ms!
2.          where mscal.baseline("^CS*&CS*")]!
4.    groupby TIME,ANTENNA2!

1.  The subquery selects the required columns. 
2.  It only uses the rows with cross-correlation baselines between non-core and core (CASA syntax). 
3.  As part of the subquery output it calculates SUMW, the sum of the weights where the data are not flagged. 
     Note: in the next release of casacore one can probably use masked arrays like: 

 sum(WEIGHT_SPECTRUM[FLAG])!
4. The main query aggregates the subquery output to a single array per TIME and ANTENNA2. It sums each array over 
the first axis, resulting in the weighted sum for U, V, and W. Finally it is divided by the summed SUMW to get the 
weighted averaged U, V, and W per TIME and ANTENNA2. 



Dwingeloo, 25-Aug-2015 - 33 - LOFAR synthesis data handling: TaQL 

Advanced examples 1 

Check if an MS is in non-descending time order and check for missing time slots. 
It is done by comparing the table subsets of row 0..n-1 and row 1..n (created by a nested query in the FROM). 
Note the use of LIMIT -1 to denote the one but last row (a la python indexing). 
 

!select t1.TIME, t1.TIME-t2.TIME as STEP from!
!    [select from ~/L33277_SAP000_SB000_uv.MS limit -1] t1,!
!    [select from ~/L33277_SAP000_SB000_uv.MS offset 1] t2!

!  where int((t2.TIME-t1.TIME)/t1.EXPOSURE+0.0001) not in [0,1]!
!
!
!

Check if the QUALITY subtables generated by NDPPP and rficonsole are the same, except for the baselines that were 
flagged already (because rficonsole counts them, but NDPPP does not). 
Note that t3 contains the baselines with some flagged data in the original MS. 
!

!select from ndppp.ms/QUALITY_BASELINE_STATISTIC t1,!
!            rficonsole.ms/QUALITY_BASELINE_STATISTIC t2,!
!            [select unique ANTENNA1,ANTENNA2 from original.ms where any(FLAG)] t3!

!  where any(t1.VALUE != t2.VALUE) and!
!  !any(ANTENNA1 = [select ANTENNA1 from t3] && ANTENNA2 = [select ANTENNA2 from t3])!



Dwingeloo, 25-Aug-2015 - 34 - LOFAR synthesis data handling: TaQL 

Advanced examples 2 

Check if the demixing solutions in the old and new way are the same for CygA. 
The old one only contains CygA, the new one contains more, so a selection is needed. 
 
taql 'select from instrumentold t1,!

                  [select from instrument3 where NAMEID in!
          [select rowid() from ::NAMES where NAME~m/CygA/]] t2!
      where !all(t1.VALUES ~= t2.VALUES)’!

!
    select result of 0 rows!
!
!

Note that above assumes that the table orders are the same. If not,!
   orderby STARTX,STARTY!
should be used for both tables to make them the same. 
 
taql 'select from [select from instrumentold orderby STARTX,STARTY] t1,!
                  [select from instrument3 where NAMEID in!
          [select rowid() from ::NAMES where NAME~m/CygA/] orderby STARTX,STARTY] t2!

      where !all(t1.VALUES ~= t2.VALUES)’!
 



Dwingeloo, 25-Aug-2015 - 35 - LOFAR synthesis data handling: TaQL 

Advanced examples 3 

Swap columns ANTENNA1 and ANTENNA2 in a MeasurementSet. 
The problem is that TaQL updates in place, thus as soon as one ANTENNA column is set, its original values are lost. 
 
 
 
The first solution works fine (think about it), but is some kind of a hack. 
 
    update my.ms set ANTENNA1 = ANTENNA1+ANTENNA2,!

!                 ANTENNA2 = ANTENNA1-ANTENNA2, ANTENNA1 = ANTENNA1-ANTENNA2!
!
!

!
The following solution is neater. 
It holds the original values of ANTENNA1 in a temporary table in memory. 
 
    update my.ms, [select ANTENNA1 from my.ms giving as memory] as orig!
               set ANTENNA1 = ANTENNA2, ANTENNA2 = orig.ANTENNA1!
!


