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ABSTRACT

Strong gravitational lensing is a powerful technique for probing galaxy mass distributions and for measuring
cosmological parameters. Lens systems with extended source-intensity distributions are particularly useful for this
purpose since they provide additional constraints on the lens potential (mass distribution). We present a pixelated
approach to modeling the lens potential and source-intensity distribution simultaneously. The method makes
iterative and perturbative corrections to an initial potential model. For systems with sources of sufficient extent
such that the separate lensed images are connected by intensity measurements, the accuracy in the reconstructed
potential is solely limited by the quality of the data. We apply this potential reconstruction technique to deep
Hubble Space Telescope observations of B1608+656, a four-image gravitational lens system formed by a pair of
interacting lens galaxies. We present a comprehensive Bayesian analysis of the system that takes into account
the extended source-intensity distribution, dust extinction, and the interacting lens galaxies. Our approach allows
us to compare various models of the components of the lens system, which include the point-spread function
(PSF), dust, lens galaxy light, source-intensity distribution, and lens potential. Using optimal combinations
of the PSF, dust, and lens galaxy light models, we successfully reconstruct both the lens potential and the
extended source-intensity distribution of B1608+656. The resulting reconstruction can be used as the basis of
a measurement of the Hubble constant. As an illustration of the astrophysical applications of our method, we use
our reconstruction of the gravitational potential to study the relative distribution of mass and light in the lensing
galaxies. We find that the mass-to-light ratio for the primary lens galaxy is (2.0 = 0.2)h M Lg}@ within the

Einstein radius (3.9 h~! kpc), in agreement with what is found for noninteracting lens galaxies at the same scales.
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1. INTRODUCTION

Strong gravitational lens systems provide a tool for probing
galaxy mass distributions (independent of their light profiles)
and for measuring cosmological parameters (e.g., Kochanek
et al. 2006, and references therein). Lens systems with extended
source-intensity distributions are of special interest because they
provide additional constraints on the lens potential (and hence
the surface mass density) due to surface brightness conservation.
In this case, simultaneous determination of the source-intensity
distribution and the lens potential is needed. To describe ei-
ther the source-intensity or the lens potential /mass distribution,
there are two approaches in the literature: (1) “parametric,” or
better, “simply parameterized,” using simple, physically mo-
tivated functional forms described by a few (~ 10) parame-
ters (e.g., Kochanek; 1991; Kneib et al.; 1996; Keeton 2001;
Marshall 2006; Jullo et al. 2007), and (2) pixel-based (“pixe-
lated,” or “free-form,” or sometimes, inaccurately, “nonparamet-
ric”’) modeling on a grid, which has been done for both the source
intensity (e.g., Wallington et al. 1996; Warren & Dye 2003;

* Based in part on observations made with the NASA/ESA Hubble Space
Telescope, obtained at the Space Telescope Science Institute, which is operated
by the Association of Universities for Research in Astronomy, Inc., under
NASA contract NAS 5-26555. These observations are associated with program
GO-10158.
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Treu & Koopmans 2004; Dye & Warren 2005; Koopmans 2005;
Brewer & Lewis 2006; Suyu et al. 2006; Wayth & Webster 2006;
Dye et al. 2008) and the lens potential /mass distribution (e.g.,
Williams & Saha 2000; Bradac et al. 2005; Koopmans 2005;
Sahaet al. 2006; Suyu & Blandford 2006; Jee et al. 2007; Vegetti
& Koopmans 2008). Most of the developed lens modeling meth-
ods are simply parameterized. In particular, for the measurement
of the Hubble constant, lens potential /mass models prior to Saha
et al. (2006) have been simply parameterized because most of
the strong lens systems with time delay measurements have only
point sources (as opposed to extended sources) to constrain the
lens potential /mass distribution. A precise measurement of the
value of Hj is important for testing the flat A-cold dark matter
(CDM) model and studying dark energy. The cosmic microwave
background (CMB) allows determination of cosmological pa-
rameters with high accuracy with the exception of Hy (e.g.,
Komatsu et al. 2008). An independent measurement of Hy to
better than a few percent precision provides the single most use-
ful complement to the CMB for dark energy studies (Hu 2005).

Koopmans (2005) developed a method for pixelated source
intensity and lens potential reconstruction that is based on the
potential correction scheme proposed by Blandford et al. (2001).
This pixelated potential reconstruction method is applicable to
lens systems with extended source-intensity distributions. Pixel-
based modeling has the advantage over simply-parameterized
modeling in the flexibility in the parametrization. This is
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especially important in complex lens systems (e.g., multicom-
ponent source galaxies or multiple lens galaxies) where simply-
parameterized models may become inadequate. Furthermore,
pixel-based modeling has the capabilities of detecting dark mat-
ter substructures (Koopmans 2005; Vegetti & Koopmans 2008).

In this paper, we present a lens modeling technique that
is similar to that of Koopmans (2005), but in a Bayesian
framework to allow quantitative comparison between various
source intensity and lens potential models. The point-spread
function (PSF), lens galaxy light, and dust models are also
incorporated in this scheme. Therefore, this method provides
a way to rank these data models (with the five interdependent
components: source-intensity distribution, lens potential, PSF,
lens galaxy light, and dust) quantitatively. There are also
propagation effects due to structures along the line of sight
(LOS), but we ignore this for now and characterize this in a
forthcoming paper (Paper II).

We choose to reconstruct the lens potential instead of the
surface mass density because (1) it is the quantity that directly
relates to the cosmological parameters via the time delays
and angular diameter distance ratios and (2) the surface mass
density can, in principle, be easily obtained by differentiation.
In contrast, Williams & Saha (2000) and Saha et al. (2006)
pixelized the surface mass density. Since the surface mass
density over the entire lens plane is required in the integral for
obtaining the lens potential, the conversion of the (finite) gridded
mass density to the lens potential is not straightforward.

We apply the pixelated potential reconstruction method to
B1608+656 (Myers et al. 1995), a quadruple image gravitational
lens system with an extended source at z; = 1.394 (Fassnacht
et al. 1996), and two interacting galaxy lenses at zg = 0.6304
(Myers et al. 1995). B1608+656 is special in that it is the only
four-image gravitational lens systems with all three independent
time delays between the images measured with errors of only a
few percent (Fassnacht et al. 1999, 2002). Thus, it provides
a great opportunity to measure the Hubble constant, which
is the subject of Paper II. To obtain the Hubble constant to
high precision, an accurate lens potential model is crucial.
Koopmans & Fassnacht (1999) modeled this system using
simply parameterized lens potentials, but did not account for the
presence of dust and the extended source intensity. Koopmans
et al. (2003) improved on the simply parameterized modeling
of the lens potential with the treatment of dust, the use of
a simply parameterized extended source-intensity distribution,
and the inclusion of constraints from stellar dynamics. However,
Suyu & Blandford (2006) showed that this most up-to-date
simply parameterized lens model in Koopmans et al. (2003) fails
certain tests such as the crossing of the critical curve through
the saddle point of the figure-eight-shaped intensity contour of
the merging images. This suggests that the pixelated potential
method may be better suited than a simply parameterized
method for the two interacting galaxies. In this paper, we
deliver a comprehensive analysis of the B1608+656 system
that incorporates the effects of the extended source intensity,
presence of dust, and interacting lenses. The dissection of
B1608+656 allows us to study the relative distribution of mass
and light in the interacting lens galaxies.

The outline of the paper is as follows. In Section 2, we
introduce the pixelated potential reconstruction method. We
demonstrate the method using simulated data in Section 3 and
generalize the method to real data in Section 4. The remaining
sections of the paper target B1608+656. In Section 5, we
summarize the Hubble Space Telescope (HST) observations of
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B1608+656 and present the image processing. In Section 6,
we show a pixelated potential reconstruction of B1608+656.
Finally, in Section 7, we comment on the mass-to-light (M/L)
ratio in B1608+656 based on the results of our lensing analysis.
In Paper II, we use the resulting potential reconstruction of
B1608+656 together with a study of the lens environment to
infer the value of the Hubble constant.

Throughout this paper, we assume a flat A-CDM universe
with Q,, = 0.26, Q, = 0.74, and Hy = 100 hkm s~ Mpc~!
(Komatsu et al. 2008). For the lens and source redshifts in
B1608+656, 1” on the sky corresponds to 4.9 4~! kpc on the
lens plane and 6.1 2! kpc on the source plane.

2. PIXELATED POTENTIAL RECONSTRUCTION

In the following subsections, we present the pixelated poten-
tial reconstruction method. Section 2.1 contains the formalism
of the method, and Section 2.2 is a practical implementation of
the method.

2.1. Formalism for Iterative and Perturbative Potential
Corrections

The iterative and perturbative potential correction scheme
for lens systems with extended sources was first suggested
by Blandford et al. (2001) and studied by Koopmans (2005),
Suyu & Blandford (2006), and recently by Vegetti & Koopmans
(2008). The pixelated potential reconstruction method that we
present here is similar to that in Koopmans (2005) but differs
in the numerical details and our use of Bayesian analysis,
which allows for model comparison. The method in Vegetti
& Koopmans (2008) is also based on Bayesian analysis and
has adaptive gridding on the source plane. In the rest of the
section, we briefly outline the theory of pixelated potential
reconstruction.

The central concept for this method is to start with an
initial lens potential model and to correct it, perturbatively and
iteratively, to obtain an estimate of the true lens potential. The
initial lens potential will usually be simply parameterized (to
allow faster convergence with a smaller number of parameters)
and ideally would be close to the true potential. It will then
be refined via corrections on a grid of pixels. Obtaining the
parameter values in the initial lens potential is often a nonlinear
process; in contrast, the potential correction in each iteration is
a linear inversion.

One way to think about this procedure is to observe that in
a perfectly observed image, nested intensity contours in the
source plane map onto multiple regions of the image plane.
Intensity is preserved by the lens and so the map is from a set
of single source contours to the corresponding image contours.
The only freedom that we have is to slide image points along
the contours. Using the fact that the deflection field is curl-
free effectively removes this freedom. What we describe is a
procedure to determine this map that takes into account a finite
PSF, dust extinction, and source-intensity contamination by the
lens galaxy light. In Paper II, we also include the influence of
propagation effects.

To keep the formalism simple for the moment, let us ignore
the effects of the PSF, dust extinction, and lens galaxy light. Let
0 be the coordinates on the image plane and 8 be the coordinates
on the source plane. Let Id(é) be the observed image intensity
of a lensed extended source, and let {(6) be an initial scaled



No. 1, 2009

surface potential model’ for the lens system. Given ¥(6), one
can obtain the best-fitting source-intensity distribution (e.g.,
Suyu et al. 2006, and references therein). Let [, (67(,3)) be the
source 1ntens1ty translated to the image plane via the potential

model 1/f(9) where 6 and ,3 are related via the lens equation

6 = ,3 Vl//(@) We define the intensity deficit (also known as
the image residual) on the image plane by

81(6) = I4(6) — I,(6(B)). (1)

Suppose the initial lens potential model is perturbed from the
true potential, ¥y(8), by §v¥(0):

Y (0) = Yo(0) + 59 (0). )

For a given image (fixed Id(é)) and the initial potential model
¥ (0), we can relate the intensity deficit to the potential pertur-
bation §v(6) by

01, (,3) 28y (6)

81(6) =
@) Y

3

to first order in 810(67) (see e.g., Suyu & Blalndfozd 2006 for
details). The source-intensity gradient d/s(8)/dB8 implicitly
clepends on the potential model w(é) since the source position
B (where the gradient is evaluated) is related to 1&(9) via the
lens equation. We can solve Equation (3) for §v(6) given the
intensity deficit and source-intensity gradients, update the initial
(or previous iteration’s) potential model, and repeat the process
of source-intensity reconstruction and potential correction until
the potential converges to the true solution with zero intensity
deficit. In Section 2.2, we focus on solving Equation (3).

2.2. Implementation of Pixelated Potential Reconstruction
2.2.1. Probability Theory

The first step in solving Equation (3) for the potential
perturbation is to obtain the source-intensity gradients and
the intensity deficit, which appear in the correction equation.
We follow Suyu et al. (2006) to obtain the source-intensity
distribution on a grid of pixels given the current iteration’s
lens potential model. In this source reconstruction approach,
the data (observed image) are described by the vector d;, where
j=1,..., Ng and N4 is the number of data pixels. The source
intensity is described by the vector s;, where i = 1, ..., N
and N; is the number of source-intensity pixels. The observed
image is related to the source intensity via d; = fj;s; + nj,
where f;; is the so-called blurred lensing operator (mapping
matrix) that incorporates the lens potential (which governs the
deflection of light rays) and the PSF (blurring),'” and n; is the
noise in the data characterized by the covariance matrix Cp. In
the inference of s;, we impose a prior on s;, which can be thought
of as “regularizing” the parameters s; to avoid overfitting to the
noise in the data. Following Suyu et al. (2006), we use quadratic
forms of the regularization (specifically, zeroth-order, gradient,
and curvature forms of regularization). The Bayesian inference
of the source-intensity distribution (s;) given the observed image
(dj) is a linear inversion and is a solved problem. Having

9 4 includes the distance ratio.
10 pDyst extinction, if present, is also included in this mapping matrix f Jis
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obtained the source intensity, we can calculate the intensity
deficit and source-intensity gradients.

We pixelize the lens potential to allow for a flexible
parametrization scheme. To solve Equation (3), we cast it
into a matrix equation and invert the linear system. To write
Equation (3) in a matrix form, we discretize the lens potential
on a rectangular grid of N, pixels (which is less than the number
of data pixels Ny so that the potential and source-intensity pixels
are not underconstrained) and denote the potential perturbation
by §v;, wherei = 1, ..., N,. The intensity deficit on the image
gridis§1; = d; —f;;s;,where j =1, ..., Nq (using the notation
from source-intensity reconstruction, d, f, and s are the data vec-
tor, the blurred lensing operator, and the source-intensity vector,
respectively). Equation (3) now becomes

81 =téy +n, “)

where tis a Ng x N, matrix, which incorporates the PSF, the
source-intensity gradient, and the gradient operator that acts on
3V (see the appendix for the explicit form of t), and n is the
noise in the data. The above equation is equivalent to

d=1s+té¢ +n. (&)

We can infer the potential corrections ¢ given the data
d, source intensity s, and source-intensity gradients that are
encoded in t. In the inference, we impose a prior on §y. The
posterior probability distribution is

likelihood prior

P(d|3y . t.1,5) POV |1, Osy)
P(d|fv s, ts M, gél/f)

evidence

posterior

P(‘S'Md, fa s, t7 u, 951//) =

(6)
where (1 and g, are the (fixed) strength and form of regu-
larization for the potential correction inversion, and all irrele-
vant (in)dependences have been dropped. Modeling the noise as
Gaussian, the likelihood is

exp(—ED(d|6w, ts f, S))

Pd|éy, 1,1, 5) = 7 , )

where

—fs —t89)'C,' (d — fs — t8¢)
®)

1
Ep(d|dy, t.1,5) = E(d

1

_ _ 2
=3Xx5 €))

and Zp, is the normalization for the probability. We express the
prior in the following form:

exp(—u Esy (8¥195y))
Zsy (1) )

We use quadratic forms of the regularizing function Esy. In
particular, we use the curvature form of regularization (see
for example, Appendix A of Suyu et al. 2006 for an explicit
expression of the curvature form of regularization). We use
this regularization instead of the zeroth-order or gradient forms
because the lens potential should in general be smooth, being the
integral of the surface mass density. Curvature regularization

Py, 95y) = (10)
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in the potential corrections effectively corresponds to zeroth-
order regularization in the surface mass density corrections.
This implies a prior preference toward zero surface mass density
corrections, thus suppressing the addition of mass to the initial
mass model unless the data require it.

Maximizing the posterior of parameters §y, we obtain the
most probable solution

SYup =A"'D, (11)
where

A=B+uC,

B = VVEpSY) =t'Cy't,
C = VVE;,(8¥),

D =t"c;'(d —fs),

0
andV=—

a6y

The matrices A, B, and C have dimensions N, x N, and are,
by definition, the Hessians of the exponential arguments in the
posterior, the likelihood, and the prior probability distributions,
respectively.

As discussed in detail in, for example, MacKay (1992) and
Suyu et al. (2006), the evidence is irrelevant in the first level
of inference where we maximize the posterior of parameters
d¥ to obtain the most probable parameters §¥;p. However, the
evidence is crucial for the second level of inference for model
comparison, where a model incorporates the lens potential, PSF,
and regularizations of both the source intensity and the potential
correction. If we assert that models are equally probable a priori,
then the evidence gives the relative probability of the model
given the data. In other words, the ratio in the evidence values
of two models tells us how much more probable the first model
is relative to the second model if we assume that the two models
are a priori equally probable. Since the evidence gives only the
relative probability, the data set needs to be kept the same for
model comparison.

The posterior (P(3¥|d,f,s,t, 1, 9s,)) and the evidence
(P(d|f, s, t, u, 9511/)) in Equation (6) are conditional on
the source-intensity distribution. Ideally, we would have
an expression of the posterior for both s and &y:
P(s,8v|d,f, 1, g, t, 1, sy ), where A and gg are, respectively,
the strength and form of regularization for s. We would also ob-
tain the evidence by marginalizing both the source-intensity
and the potential correction values, P(d|f, A, gg, t, 11, gw) =
[ dsd8y P(d|s, 8, f, )P (s, 8% X, gs, 11, 95,). However, due
to the iterative nature of the method (i.e., s and &y are
not inferred simultaneously), we do not have such expres-
sions for the posterior and the evidence. Pragmatically, we use
the evidence from the source reconstruction (given the cor-
rections §y¥), P(d|f, 8V, A, gg), for comparing the potential
models, PSF, and regularizations. Specifically, after iterating
through the source-intensity reconstructions and lens poten-
tial corrections, we use the final corrected lens potential for
one last source-intensity reconstruction and use the evidence
from this final source reconstruction for comparing models.
This approximation is valid provided that the probability dis-
tributions of 8¢ and the regularization constant are sharply
peaked at the most probable values. Suyu et al. (2006) showed
that the delta function approximation for the regularization
constant is acceptable; simulations of the iterative potential
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reconstruction method suggest that the probability of §y af-
ter the final iteration is sharply peaked. Therefore, the prob-
ability of a given potential model, PSF, and form of regular-
ization is P(f, gg|d) o« [drddy P(d|f, 8y, A, g5) P (1, g5) ~

P(d|f, 8;/;, X ds)P(f, g5), where 8;/r and X are the most proba-
ble solutions. Assuming that all models are equally probable a
priori (i.e., P(f, gg) is constant), the evidence from the source
reconstruction serves as a reasonable proxy to use for model
comparison.

There is an uncertainty associated with the evidence values
due to finite source-intensity resolution as a result of the source
pixelization. The source reconstruction region is initially chosen
such that the mapped source region on the image plane encloses
the Einstein ring. This ensures that the source region contains
the entire source-intensity distribution. Throughout the iterative
pixelated potential reconstruction, the source region and pix-
elization are kept the same. In the final source reconstruction
for evidence computation, the evidence value depends on the
pixelated source region because the goodness of fit on the im-
age plane generally changes, especially in areas of significant
intensity gradients, as one shifts the source region. To esti-
mate the uncertainty in the evidence values, we perform the last
source reconstruction for various source regions that are shifted
by a fraction of a pixel from the optimized one in the poten-
tial reconstruction. The range of the resulting evidence values
for the various source regions then allow us to quantify the un-
certainty in the evidence. In addition to the uncertainty due to
source pixelization, the evidence also depends on the amount of
regularization on §¥, which is discussed in Section 2.2.2.

2.2.2. Technicalities of the Pixelated Potential Reconstruction

Solving for the potential perturbations is very similar to
solving for the source-intensity distribution in Suyu et al. (2006)
except for the following technical details.

1. In each iteration, the perturbative potential correction is
obtained only in an annular region instead of over the entire
lens potential grid due to the need for the source-intensity
gradient (see Equation (3)) to be measurable. Since the
extended source intensity is only non-negligible near the
Einstein ring, we only have information about the source-
intensity gradients in this region. In practice, the annular
region is the mapping of the finite source reconstruction
grid that encloses the extended source with a minimal
number of source pixels (for computational efficiency). The
annulus of potential corrections obtained at each iteration
is extrapolated for the next iteration by minimizing the
curvature in the potential corrections. This allows the shape
of the annular region to change as needed when the lens
potential gets corrected. In addition, the forms of the
regularization matrix, as discussed in Appendix A of Suyu
et al. (2006), are modified accordingly to take into account
the nonrectangular reconstruction region (described in more
detail in the third point below).

2. Since Equation (5) is a perturbative equation in §¢, the
inversion needs to be over-regularized to enforce a small
correction in each iteration. Empirically, we set the regu-
larization constant, u, at roughly the peak of the function
w Esy (within a factor of 10), which corresponds to the value
before which the prior dominates. The resulting evidence
value from the final source-intensity reconstruction weakly
depends on the value of u, and we include this dependence
in the uncertainty of the evidence value.
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3. The potential corrections are generally nonzero at the
edge of the annular reconstruction region. This calls for
slightly different structures of regularization compared to
those written in Appendix A in Suyu et al. (2006) for
source-intensity reconstruction (since the source grids are
chosen to enclose the entire extended source such that edge
pixels have nearly zero intensities). The regularizations
are still based on derivatives of §y; however, no patching
with lower derivatives should be used for the edge pixels
because the zeroth-order regularization at the top/right edge
will incorrectly enforce the §¢ values to zero in those
areas. The absence of the lower derivative patches leads
to a singular regularization matrix,'" which is problematic
for evaluating the Bayesian evidence for lens potential
correction. However, since we do not use the evidence
values to compare the forms of regularization for the
potential corrections (because we use only the curvature
form) nor to compare the lens potential and PSF model,
the revised structure of regularization is acceptable. We
have found this structure of regularization for potential
corrections to work for various types of sources (with
varying sizes, shapes, number of components, etc.).

In the source reconstruction steps of this iterative scheme,
we discover by using simulated data that over-regularizing the
source reconstruction in early iterations helps the process to
converge. This is because initial guess potentials that are sig-
nificantly perturbed from the true potential often lead to highly
discontinuous source distributions when optimally regularized
(corresponding to maximal Bayesian evidence, which balances
the goodness of fit and the prior), and over-regularization would
give a more regularized source-intensity gradient for the po-
tential correction. Unfortunately, we do not have an objective
way of setting this over-regularization factor for the source re-
construction. Currently, at each source reconstruction iteration,
we set the over-regularization factor such that the magnitude of
the intensity deficit is at approximately the same level as that
from the optimally-regularized case but with a smoother source-
intensity distribution for numerical derivatives. This scheme en-
sures that we do not over-regularize when we are close to the true
potential. Based on simulated test runs, the recovery of the true
potential depends on the amount of over-regularization. When
the initial guess is far from the true potential, over-regularization
in the early iterations is crucial for convergence. We find that it
is better to over-regularize in excess than in deficit. Too much
over-regularization simply leads to more iterations to converge,
whereas too little over-regularization may not converge at all.

For each iteration of source-intensity reconstruction, there is
also a mask on the source plane to exclude source pixels that
either (1) are not mapped by that iteration’s lens potential on the
data grid or (2) have no neighboring pixels for the computation
of numerical derivatives. We generalize the regularizing func-
tion for this nonrectangular reconstruction region to have the
right-most and top-most pixels (pixels adjacent to the edge or
adjacent to the masked source pixels) patched with lower deriva-
tives as we did for the edge pixels in Appendix A of Suyu et al.
(2006). This patching ensures that the regularization matrix is
nonsingular for the evaluation of the Bayesian evidence.

Based on simulated test runs, we find that a practical stopping
criterion for the iterative procedure is to terminate when the

1 Having a singular regularization matrix (C) does not prevent one from
calculating 8¢ because the matrix for inversion (A = B + 1.C) is, in general,
nonsingular.
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relative potential corrections between all image pairs are (§yr; —
8vYn)/ (Y1 — ¥n) < 0.1%, where 1 and 2 label the images
in any pair. After this criterion is reached, further iterations
give a negligible contribution to the predicted Fermat potential
differences between the images.

2.2.3. Mass-Sheet Degeneracy

The restriction to using only isophotal data implies that the
potential correction we obtain at each iteration may be affected
by the “mass-sheet degeneracy” (Falco et al. 1985). However,
the addition of mass sheets is suppressed by the curvature form
of the regularization for the potential correction and also by the
large amount of over-regularization. We refer to Kochanek et al.
(2006) and Paper II for a detailed description of the mass-sheet
degeneracy; here we review a few key points that are relevant
for the potential corrections. In essence, an arbitrary symmetric
paraboloid, gradient sheet, and constant can be added to the
potential without changing the predicted lensed image:

- 1—vﬁ2 L - -
I/IU(9)=T|9| +a-60+c+vy(), (12)

where w(é) is the original potential, wv(é) is the transformed
potential, and v, d, and c¢ are constants. The constants a and
¢ have no physical effects on the lens systems as they merely
change the origin on the source plane (which is unknowable) and
change the zero point of the potential (which is not observable).
The parameter 1 — v refers to the amount of mass sheet, which
can be seen in the corrgsponding convergence transformation:
k,(0) = (1 — v) + vk(#). To make sure we remain “close” to
the initial potential model, we set v = 1 and fix three points in
the corrected potential after each iteration to the corresponding
values of the initial potential. Setting v = 1 ensures that the
size of the extended source intensity remains approximately the
same, and the three fixed points allow us to solve for a and ¢ in
Equation (12) to remove irrelevant gradient sheets and constants
in the reconstructed potential. We choose the three points to
be three of the four (top, left, right, and bottom) locations of
the annular reconstruction region that are midway in thickness
between the annular edges. The three points are usually chosen
to be at places with lower surface brightness in the ring. This
technique of “fixing” the mass-sheet degeneracy is demonstrated
in Section 2.2.4 using simulated data.

2.2.4. Summary

To summarize, the steps for the iterative and perturbative po-
tential reconstruction scheme via matrices are as follows. (1)
Reconstruct the source-intensity distribution given the initial
(or corrected) lens potential based on Suyu et al. (2006). (2)
Compute the intensity deficit and the source-intensity gradient.
(3) Solve Equation (5) for the potential corrections §y in the
annulus of reconstruction. (4) Update the current potential using
Equation (2) 1I’nexl iteration — ¢currem iteration ~ Slﬁ (5) Transform
the corrected potential ¥ .. ieration Vi@ Equation (12) so that
v = 1 and the transformed corrected potential has the same val-
ues as the initial potential at the three fixed points. (6) Extrapo-
late the transformed corrected potential for the next iteration. (7)
Interpolate the transformed corrected potential onto the resolu-
tion of the data grid for the next iteration’s source reconstruction.
(8) Repeat the process using the extrapolated and finely gridded
reconstructed potential, and stop the process when the relative
potential correction between any pair of images is < 0.1%.
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Figure 1. Demonstration of potential reconstruction: simulated data and potential perturbation. Left-hand panel: the simulated source-intensity distribution with an
extended component (of peak intensity of 1.0 in arbitrary units) and a central point source (of intensity 3.0) on a 30 x 30 grid. The solid curves are the astroid caustics
of the initial potential that consists of only the main SIE. Middle panel: the simulated image of the source-intensity distribution on the left using the true potential
consisting of two SIEs (convolution with the Gaussian PSF and addition of noise are included, as described in the text). The solid line is the critical curve of the
initial potential and the dotted lines mark the annular region to which the source grid maps (using the mapping matrix f). Right-hand panel: the fractional potential
perturbation in the initial potential model. The Xs mark the three points where we fix the potential perturbation to zero. In both the middle and right-hand panels, the
asterisk and the plus sign indicate the positions of the main SIE component and the perturbing SIE component, respectively.

Table 1
The Relative Fermat Potential (¢ = (5 — B )2 /2 — ) Between the Four Images of the True Potential and of the Reconstructed Potential for a Few Selected Iterations
Potential dap dcp épB Source Position
(arcsec)
True 0.141 0.234 0.437 .
Initial 0.172 £ 0.189 0.228 £ 0.156 0.437 £0.041 (2.587,2.483) £ (0.013, 0.076)
Iteration = 0 0.178 £ 0.070 0.246 + 0.068 0.479 £ 0.010 (2.608, 2.483) + (0.006, 0.034)
Iteration = 2 0.161 £ 0.011 0.242 £ 0.010 0.471 £0.011 (2.623, 2.484) £ (0.005, 0.005)
Iteration = 9 0.151 £ 0.006 0.244 £ 0.004 0.454 £ 0.006 (2.621, 2.484) + (0.003, 0.002)
v 0.96
Iteration = 9 0.145 £ 0.006 0.234 + 0.004 0.436 £ 0.006

Notes. We use the average source position of the four source positions for the computation of the Fermat potential. The four source positions
deviate by ~ 0”1 in the initial model, and agree within ~ 07005 at iteration = 9. The uncertainties in the predicted relative Fermat potential are
due to the uncertainties in the source position. The good agreement between the predicted Fermat potential values for the initial potential and
the true values is coincidental due to the use of the average source position.

3. DEMONSTRATION: POTENTIAL PERTURBATION
DUE TO AN INVISIBLE MASS CLUMP

In the previous section, we have outlined a method of
pixelated potential reconstruction. In this section, we will
demonstrate this method using simulated data with a lens
consisting of two mass components.

3.1. Simulated Data

We use singular isothermal ellipsoid (SIE) potentials
(Kormann et al. 1994) to test the potential reconstruction
method. For this demonstration, we let the lens be comprised
of two SIEs at the same redshift zg = 0.3: a main component
and a perturber. The main lens has a one-dimensional velocity
dispersion of 260 km s~!, an axis ratio of 0.75, and a semimajor
axis position angle of 45° (from vertical in the counterclockwise
direction). The (arbitrary) origin of the coordinates is set such
that the lens is centered at (275, 2”5), the center of the 5” x 5” im-
age. The perturbing SIE is centered at (3”8, 275) with a velocity
dispersion of 50 km s~!, axis ratio of 0.60, and semimajor axis
position angle of 70°. The exact potential is the sum of these two
SIEs. We model the source intensity as an elliptical distribution
inside the caustics at z; = 3.0 with an extended component (of
peak intensity of 1.0 in arbitrary units) and a central point source
(of intensity 3.0). This source is chosen such that the lensed im-

age resembles B1608+656. We use 100 x 100 image pixels each
of size 005 (typical pixel size of the HST Advanced Camera for
Surveys (ACS)), 30 x 30 source pixels each of size 07025, and
25 x 25 potential pixels each of size (2. To obtain the simulated
data, we map the source-intensity distribution to the image plane
using the exact lens potential and the lens equation, convolve
the lensed image with a Gaussian PSF whose FWHM = 015,
and add Gaussian noise of variance 0.015. Figure 1 shows the
simulated source in the left-hand panel and the simulated noisy
data image in the middle panel. The Fermat potential difference
between the images are listed in Table 1. The images are labeled
by A, B, C, D, and their locations are (1777, 1702), (3790, 3"59),
(3754, 1726), and (1”34, 3738), respectively.

3.2. Iterative and Perturbative Potential Corrections

We take the initial guess of the lens potential to be the
main SIE component but with the position angle changed from
45° to 40°. This corresponds to a typical scenario where the
perturbing SIE is faint/dark so that it is not detected in the
image, and hence is not incorporated in the smooth parametrized
model of the main SIE component. The rotation in the position
angle of the main SIE component corresponds to a situation
where the mass of the galaxy does not strictly follow the
light, but the position angle of the lens mass distribution is
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initially adopted from the position angle of the lens galaxy light.
Here and after, “initial potential” refers to this initial guess of
the potential model (as opposed to the true/exact potential).
Figure 1 shows the potential perturbation relative to the initial
potential in the right-hand panel. In obtaining this plot, the initial
potential has a constant gradient plane and offset added such
that the top, left, and bottom midpoints in the annulus (marked
by Xs in the plot) are fixed to the true potential with zero
potential perturbation (as described in the passage following
Equation (12)). In the iterative potential reconstruction process,
the reconstructed potential at each iteration also has these three
points in the annulus fixed to the initial model. The locations
of the three fixed points have no impact on recovering the true
potential when the source is extended enough to form an Einstein
ring on the image plane. However, if the source is compact, then
locations of the three points do matter and they are chosen to
be at places where the information content (image intensity) is
low.

We perform 10 iterations of the perturbative potential correc-
tion method outlined in Section 2.2. The iterations are labeled
“PI” from O to 9. For each source reconstruction iteration, we
adopt the curvature form of regularization and use the source-
intensity reconstruction for the evaluation of the source-intensity
gradients that are needed for the potential correction. The source
inversions are over-regularized in early iterations in order to ob-
tain smooth source reconstructions for evaluating the gradients.
For each potential correction iteration, we use the curvature
form of regularization and set the regularization constant for the
potential reconstruction to be 10x the value of p where uEjs,y,
peaks in iteration = 0. This regularization value is ~ 10® and
is used for all subsequent iterations (since we find that the peak
in pEsy changes little as the iterations proceed). For compari-
son, the “optimal” regularization constant is ~ 107 at iteration
= 0 and is ~ 107 at iteration = 9. Therefore, the potential re-
construction inversions are heavily over-regularized in the early
iterations to keep the corrections to first order; as the lens poten-
tial gets corrected, the amount of over-regularization diminishes
as the inversion approaches the linear regime with small inten-
sity deficits. We show figures of source reconstructions and
potential corrections for some, but not all, of the iterations.

The top row of Figure 2 shows the results of PI = 0. The
over-regularized reconstructed source in the left-hand panel
does not resemble the original source, and the (normalized)
image residual in the middle-left panel shows prominent arc
features due to the presence of both the misaligned initial model
and the SIE potential perturbation. The reconstructed §y in the
middle-right panel is of the same structures as the exact §¢ in
Figure 1, though the magnitude is smaller due to the correction
being a perturbative one. A plot of the image residual after
correction (= 81 — t§¢) continues to show arc features though
less prominent than in the top middle-left panel in Figure 2. The
same image residual plot with the true potential perturbation also
shows similar arc features, which indicates that Equation (3)
is indeed a perturbative equation and thus justifies the over-
regularization in the potential correction step.

The second row of Figure 2 shows the results of PI = 2. The
reconstructed source in the left-hand panel better resembles the
original source in Figure 1. The amount of misfit in the image
residual has decreased in the middle-left panel, signaling that
we are correcting toward the true potential. The middle-right
panel is the potential correction in PI = 2, and the right-hand
panel is the amount of perturbation that remains after PI = 2.
The amount of potential perturbation remaining is closer to zero
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compared to the top row, which is a sign that the iterative method
converges.

The bottom panels in Figure 2 show the results of PI =
9, the last iteration. The source is faithfully recovered in the
left-hand panel, resulting in negligible image residual in the
middle-left panel (reduced x> = 1.02 inside the annulus'?).
The centroid of the source is slightly shifted compared to the
original because of our adding constant gradients to fix the three
points in the potential corrections. The absolute position of the
source is irrelevant as we can arbitrarily set the coordinates; it is
only the relative positions on the source plane that matter. The
source positions are shifted relative to the plotted caustic curve
only because these caustic curves are the ones from the initial
potential guess (they were not computed for the reconstructed
potential due to the low resolution in the reconstructed potential
grids). If we were to plot the caustic curve of the corrected
potential, we would find no overall shift in the source with
respect to the caustic curve. The middle right panel shows
the final iteration’s potential correction, which is barely visible
due to the negligible image residual left to correct. The right-
hand panel shows that most of the potential perturbation to the
true potential has been corrected, though there is still some
left. However, this amount of remaining uncorrected potential
perturbation leads to image residuals that are effectively masked
by the noise in the data. We have thus reached the limit in the
potential correction that is set by noise in the data.

Table 1 lists the predicted Fermat potential differences for
the initial potential guess and for the corrected potential in
PI = 0, 2, and 9. We use the average source position (also
listed in the table) of the four mapped source positions for the
computation of the Fermat potential. The uncertainty in the
predicted Fermat potential difference comes from the error in
the source position due to discrepancies in the mapped source
positions of the four images. The mapped source positions agree
within ~ 07005 (i.e., within a fifth of a source pixel) in the
final iteration, a significant improvement to ~ 0”1 in the initial
potential. The convergent Fermat potential differences in PI =
9 are systematically higher than the true Fermat potential
differences. This is because lensing only allows us to recover
the Fermat potential differences up to a constant factor due to
the mass-sheet degeneracy. The transformation in Equation (12)
would scale the Fermat potential difference by a factor of v. The
last row in Table 1 shows that a mass-sheet transformation with
v = 0.96 leads to the predicted Fermat potential values agreeing
with the true values within the uncertainties. We expect this
particular simulation’s reconstructed pixelated potential to be
different from the true potential by a mass-sheet transformation
of v ~ 0.96 due to the unaccounted mass of the secondary
SIE (~ 4% of the primary SIE) in the initial model. In the
iterative potential corrections, mass additions are suppressed in
the annulus due to the regularization. This breaks the mass-
sheet degeneracy, but underestimates the total mass within the
annulus (the SIE perturber was not included in the initial model):
the reconstructed potential, therefore, continues to have a deficit
of mass in the annulus. Since the value of the convergence in
the annulus is generally less than 1, the reconstructed potential
is thus approximately a mass-sheet transformation of the true
potential with the mass deficit in the form of a constant sheet.

12 The reduced X2 is given by Xz/(Npix in annulus — V)a where Npix in annulus is
the number of data pixels in the annulus that encloses the ring and y is an
estimate of the number of “effective” parameters (e.g., MacKay 1992; Suyu
et al. 2006).
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Figure 2. Demonstration of potential reconstruction: results of source-intensity reconstruction and potential correction for iteration = 0, 2, and 9. The top row shows
the results for PI = 0. Left-hand panel: the reconstructed source intensity using curvature regularization that is over-regularized to ensure a smooth resulting source
for evaluation of the gradients. The caustic curves in solid are those of the initial potential. Middle-left panel: the normalized image residual (difference between
the simulated image and the predicted image from the reconstructed source in the left-hand panel, in units of the estimated pixel uncertainty from the data image
covariance matrix). The prominent arc features are due to the potential perturbation. Middle-right panel: the reconstructed § ¥ using the source-intensity gradients and
image residual. Right-hand panel: the amount of potential perturbation that remains to be corrected. The middle and bottom rows show the results for PI =2 and PI =
9, respectively, with the panels arranged in the same way as in the top row. As the iterative potential correction proceeds, the source resembles better the original
source in Figure 1, the image residual becomes less prominent, and the magnitude of the reconstructed §y decreases. At PI = 9, the source in the left-hand panel has
been faithfully reconstructed that results in negligible image residual in the middle-left panel. The remaining potential perturbation in the right-hand panel, now close

to zero, cannot be fully corrected due to the noise in the data.

The simulation we have shown is one of the worst-case
scenarios where even the total mass of the initial lens model
enclosed within the Einstein ring is wrong. For initial potential
models that have the correct amount of mass within the Einstein
ring (this enclosed mass is what lensing can robustly measure
to ~ 1%—2% accuracy in real systems) and with the mass-sheet
degeneracy broken (using external information such as stellar
dynamics), the reconstructed potential would faithfully recover
the Fermat potential.

3.3. Discussion

This demonstration shows that the iterative and perturbative
potential reconstruction method works in practice. Using sim-
ulated data, we find that potential perturbations < 5% (which
may correspond to as much as ~ 20% in the relative potential
perturbations between image pairs) are correctable, though the
actual amount depends on the amount of over-regularization
for both the source inversion and the potential correction, and

on the extendedness of the source-intensity distribution. In the
case where the solution converges, the magnitudes of the rela-
tive potential corrections between image pairs steadily decrease,
and we end the iterative procedure when the stopping criterion
(described in Section 2.2) is met.

Regarding the size of the source-intensity distribution, the
more extended a source is, the better we can recover the
potential. When the source is extended enough to be lensed
into a closed ring, the true potential can be fully recovered (up
to the limit set by the noise in the data) from potential corrections
based on Equation (5). When the source is extended to cover
about half of the Einstein ring, then the corrected potential
faithfully reproduces the source with negligible image residual,
but the relative Fermat potentials may not be recovered due
to a slight relative offset in the potential between the images.
This is because the “connecting characteristics” (see Suyu &
Blandford 2006) that fix the potential difference between the
images go through regions without much signal (light of the
lensed source). Therefore, the potential is locally corrected at
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regions near the images (where there is light), but the global
offset between the regions cannot be determined.

For sources that are small in extent, the potential correction
also depends on the points we choose to fix to the initial potential
model. Since an isolated image is generally more prone to having
its potential be offset relative to the other images, we set two
of the three fixed points in the gaps on both sides of the most
isolated image and one point near the connecting images.

We find that a wrong PSF model (e.g., of a different width)
would lead to intensity deficit that would not be correctable
by the iterative potential reconstruction method. Therefore, an
uncorrectable image residual is a sign that our model of the
system (other than the lens potential) is wrong.

The potential grid that we used was 25 x 25, which we find
to be a good balance between the number of degrees of freedom
and goodness of fit. The higher the number of potential pixels,
the better one can fit to the image residual; however, in this
case, it is also more probable to have degenerate solutions. The
Bayesian evidence from the source reconstruction in principle
can be used to compare the different potential grids. In general,
we find that a potential grid that is ~ 4 times coarser than the
image grid works well.

In Section 4, we generalize this iterative potential reconstruc-
tion method, which has been shown to work on simulated data,
to treat real gravitational lens images such as B1608+656.

4. GENERALIZATION TO REALISTIC DATA:
INCORPORATING DUST EXTINCTION AND LENS
GALAXY LIGHT

In the previous section, we have demonstrated the method of
pixelated potential reconstruction using simulated data. In the
mock data, only the image of lensed source was there; in reality,
there would also be light from the lens galaxy. Furthermore, in
some cases, such as B1608+656, dust is present and absorbs
light from both the source galaxy and the lens galaxy. Based on
results of the previous section, an accurate extraction of the light
from the lensed extended source is crucial for reconstructing
the lens potential. Therefore, we will generalize the formalism
given in Section 2 to incorporate the lens galaxy light and dust.

Suppose that we have a set of PSF, dust, and lens galaxy light
models (the process of obtaining these models is described in
detail in Section 5), a lens potential model, and the observed
image. Separating the observed image into two components, the
lensed source and the lens galaxy, we can model the observed
image (as a vector for the intensities of the image pixels) as

lensed extended source lens galaxy
—— ——
d= B-K-L-s +B.-K-l+n, (13)

where B is a PSF blurring matrix, K is a dust extinction matrix,
L is the lensing matrix (containing the lens potential model), s
is the source-intensity distribution, / is the lens galaxy intensity
distribution, and n is the noise in the data characterized by
the covariance matrix Cp. This is an extended version of the
equation d = fs + n in Suyu et al. (2006) with f replaced by
B-K-:L and d replaced by d — B - K - I. The order of the matrix
products in both terms are obtained by tracing backwards along
the light rays: we first encounter the PSF blurring from the
telescope (B), then dust extinction (K) in the lens plane, then the
strong lensing effects (L) in the case of the lensed source, and
finally the origin of light (s or 7).

Here we assume that the dust lies in a screen in front of the
lensed source and the lens galaxy. This assumption is not strictly
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valid for the lens galaxy if the dust were to have originated from
G2 (Surpi & Blandford 2003). In this case, the dust and stars
are mingled together in the lens galaxy. It is beyond the scope of
this paper to treat this mixed light and dust problem. However,
we note that the dust screen assumption is acceptable since the
aim is to obtain an accurate lensed source-intensity distribution
(for which the dust screen assumption is valid) and not the lens
galaxy intensity distribution near the core where the mixing ef-
fects would dominate. Furthermore, in simple toy models, where
either the dust and stars are uniformly mixed or the dust is a
screen lying inside the lens galaxy, we find that the extinction of
the lens galaxy light is well approximated as extinction by a fore-
ground dust screen with a reduced visual extinction. Our simple
foreground dust screen model thus provides an effective extinc-
tion that incorporates the reduced extinction for the lens and the
full extinction by a foreground dust screen for the lensed source.

If the lensed source contains a bright core such as an active
galactic nucleus (AGN), then we could consider extending
Equation (13) and model the observed image as

Nimages

d=B-K-L-s+ Z K;a;PSF@) +B-K-l+n, (14)

i=1

where the light from the extended part of the host (the first term)
would be modeled separately from that from the point sources
(the second term) and ¢; are the intensities (flux per unit solid
angle in a pixel) of the point sources (which are generally not the
same for all images due to finite resolution—both lensing and
microlensing give rise to different magnification of the point-
like source—and, in the case of a time-varying core, time delay
difference). However, it is the extended image surface brightness
that provides the information needed to reconstruct the lens
potential. For B1608+656, by taking into account the errors in
the modeling associated with the presence of the point sources
(see Section 5.2.1), we will find that a separate modeling of
the point sources is not necessary for reconstructing the lens
potential.

Given B, K, [, L, and d, one can solve for the most probable
source-intensity distribution syp, as in Suyu et al. (2006).
Furthermore, one can use the Bayesian evidence of the source
reconstruction to rank different models of PSF, dust extinction,
lens galaxy light, and lens potential (see Section 2.2.1). When
we compare models, we mark an annular region enclosing the
Einstein ring and use the same annulus of data for all models
(where models refer collectively to the lens potential, PSF, dust,
lens galaxy light, and regularization). For the chosen data set, we
determine the source region that maps to the annular region and
reconstructs the source intensities in this region. The shape of
this source region is generally not rectangular, so we generalize
the regularization schemes in Appendix A of Suyu et al. (2006)
to patch the right-most and top-most pixels (pixels adjacent to
the edge of grid or adjacent to the unmapped source pixels) with
lower derivatives. We will use the Bayesian evidence values
from the source reconstruction in Sections 5 and 6 to compare
various PSF, dust, lens galaxy light and lens potential models
for B1608+656.

To include the effects of galaxy light and dust in the pixelated
potential reconstruction method, we incorporate K and [ into
Equation (5) as in Equation (13), and include K into t (see
the Appendix for this inclusion). After these adjustments, we
can iteratively correct for the lens potential in real systems
given a PSF, a dust, and a lens galaxy light model based on
the machinery we developed in the previous sections.
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Table 2
HST Observations of B1608+656

Proposal Proposal Date Instrument Filter Exposures  Exposure Time
PI ID (s)
C. Fassnacht 10158 2004 Aug24  ACS/WFC  F606W 4 609
4 646
F814W 4 632
4 646
2004 Aug25 ACS/WFC  F606W 8 609
8 646
F814W 8 632
8 646
2004 Aug29 ACS/WFC F606W 4 609
4 646
F814W 4 632
4 646
2004 Sep 17 ACS/WFC  F606W 4 609
F814W 4 632
4 646
4 646
A. Readhead 7422 1998 Feb 7 NIC1 F160W 5 3840
1 2048
1 896

To conclude, we have outlined and demonstrated an iterative
and perturbative potential correction scheme where the accuracy
in the reconstruction is limited by the noise in the data. The
inputs for this method are an initial guess of the lens potential as
well as assumptions regarding the PSF, dust, and lens galaxy
light. The outputs are the reconstructed potential on a grid
of pixels, the reconstructed source-intensity distribution, and
the Bayesian evidence from source reconstruction, given the
assumptions. Our goal is to apply this method to the well-
observed lens system B1608+656, and we begin by describing
our HST observations of B1608+656 in Section 5.

5. IMAGE PROCESSING OF B1608+656
5.1. HST Observations of B1608+656
B1608+656 was observed with the ACS camera on HST in
the F606W and F814W filters in 2004 August (Proposal 10158;
F606W

B

N

0

Figure 3. Left-hand (right-hand) panel: drizzled HST ACS F606W (F814W) images
lenses are clearly visible. The white dots indicate the centroid positions of the images.
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PI:Fassnacht), specifically to get high signal-to-noise ratio
(S/N) images of the lensed source emission. Table 2 summarizes
the observations. Each orbit of the ACS visits consisted of
one four-exposure dither pattern in either F6OO6W or F§14W
through the Wide Field Channel (WFC). We used the same
dither pattern described in York et al. (2005) to permit drizzling
to a higher angular resolution than the default ACS CCD pixel
size (~ 0705). This subpixel scale is especially important for
characterizing the PSF.

In order to correct for the dust extinction in the lens system,
we also include the Near Infrared Camera and Multi-Object
Spectrometer 1 (NICMOS) F160W images (Proposal 7422;
PI:Readhead). Details of the NICMOS observations are also
listed in Table 2.

The ACS images of B1608+656 are presented in Figure 3
and show the two lensing galaxies and the presence of a dust
lane through the system. We need to correct for both the dust
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with 0703 pixels from 9 (11) HST orbits. The dust lane and interacting galaxy
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lane and the light from the lens galaxies, which can affect the
isophotes of the Einstein ring of the extended lensed source.
Before we can determine the amount of extinction, we need to
first unify the resolutions of the images in different wavelength
bands due to PSF dependencies. This requires PSF modeling,
deconvolution, and reconvolution for images. Having unified
the resolutions of the images, we can determine the intrinsic
colors of the various components (lens galaxies, lensed source
galaxy, AGN at the core of the source galaxy) in the system that
are required for the dust correction. After correcting for dust,
we can then determine the light profiles of G1 and G2 by fitting
them with Sérsic profiles (/(r) exp(—(r/a)l/"), where r is
the radial coordinate, a is a scale length, and » is known as the
Sérsic index; Sérsic 1968). It is only at this stage, with the PSF,
dust map, and lens galaxies’ light profiles, that we can recover
the lensed Einstein ring surface brightness distribution for lens
potential modeling.

To execute the above plan of attack, in Section 5.2, we begin
by describing the drizzling process for the ACS images that are
used for the analysis. In Sections 5.3-5.5, we present a suite of
PSF, dust, and lens galaxies’ light models and describe in detail
how they are obtained. Finally, in Section 5.6, we compare these
models.

5.2. Image Drizzling

In the following subsections, we briefly describe the drizzling
process for combining the dithered ACS images and discuss the
alignment of the NICMOS image to the ACS image.

5.2.1. ACS Image Processing

The ACS data were reduced using the multidrizzle package
(Koekemoer et al. 2002) in an early version of the HAGGLeS
image-processing pipeline (P. J. Marshall et al. 2009, in prepa-
ration), producing drizzled images with a 0703 pixel scale. The
drizzled ACS images are shown in Figure 3. The corresponding
output weight images from multidrizzle give the values for the
inverse variance of each pixel. We approximate the noise co-
variance matrix as diagonal and use the variance pixel values
for the diagonal entries, even though drizzling will correlate
the noise between adjacent pixels. It is assumed that the effect
of drizzling can be modeled as having a diagonal covariance
matrix with the diagonal elements rescaled (Casertano et al.
2000). In practice, we do not need to do the rescaling because
the ranking of the models using the relative log evidence values
from the source reconstruction is insensitive to rescaling of the
covariance matrix.

A pixelated representation of a continuous intensity distri-
bution generally introduces error in the interpolated intensity
values between pixels, especially for intensity distributions with
sharp features. This error should be incorporated into the like-
lihood function. Therefore, for modeling the source-intensity
distribution on a grid (in Sections 5.6 and 6), we also include
the error due to pixelization on the image and source planes
(which we call “regridding error”) in the image covariance ma-
trix. We express the regridding error on the image plane in terms
of the data (instead of on the source plane and transforming it
to the image plane) in order to obtain a noise map that is in-
dependent of the pixelated lens modeling. The regridding error
associated with pixel i is

Nagj
1 Ap? . d; —d;)?
2 . § J !
(Ggrid)i - 12“‘1 A92 Nad‘ ’ (15)

Jj€ pixels adjacent to i
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where w; is the lensing magnification at pixel i, AB is the
source pixel size, Af is the image pixel size, Nyqj is the number
of pixels adjacent to pixel i, and d; (d;) is the image inten-
sity at pixel i (j). The summation divided by A6? in the above
equation is a conservative estimate on the error due to pixeliza-
tion on the image plane. Since sharper features in the image
have larger gradients (hence, larger values for the summations),
the regridding error is higher in these areas by construction. The
remaining quantities in the equation, 11;AB%/12, account for the
uncertainty in the predicted image (the source image mapped to
the image plane) due to the pixelization of the source-intensity
distribution. The factor 1/12 is the second moment of a uni-
form distribution between —0.5 and 0.5. When one constructs
the predicted image by mapping each image pixel to the source
plane and reading off the source-intensity value, the mapped
source position (of an image pixel) is generally not centered
on a source pixel, but have on average a (1/ \/ﬁ)-pixel shift

from the center of the source pixel. Therefore, AB/ V12 is the
effective size of the source pixel, which is then magnified by
(on average) /i due to lensing. In the pixelated potential re-
construction, we approximate the magnification at each image
pixel (which requires the second derivative of the potential) by
the value computed from the initial potential because (1) the ap-
proximation enforces the regridding error to be independent of
the pixelated potential modeling and (2) the corrected potential
values are obtained on an annular region only a few pixels thick.
Having obtained an estimate for the regridding error, we add it
in quadrature to the variance from the weight image to obtain
the entries of the approximated diagonal covariance matrix.

The inclusion of the regridding error is important for source-
intensity reconstructions with sharp intensity features (such as
the presence of a bright core); it has the effect of stabilizing
the evidence values with respect to choices in the source
pixelization. Without including the regridding error, a pixelated
description of, for example, a source-intensity distribution with
a bright core would be highly sensitive to the centering of the
core on the source pixels. A small mismatch could create large
image residuals near the cores that would veto an otherwise
good lensing model, which has the rest of the extended features
well described. Such an undesirable effect is mostly removed by
the inclusion of the regridding error. For B1608+656, the ratio
of the regridding error to the error from the multidrizzle weight
image is around ~ 30 near the image centroids and ~ 1 in other
parts in the Einstein ring.

5.2.2. NICMOS Image Processing

The NICMOS F160W image was taken from Koopmans
et al. (2003). Drizzled images on rectangular grids for different
instruments are generally not on the same resolution and not
aligned. This is the case for the NICMOS and ACS images. We
use SWarp'? to align the combined NICMOS image to the ACS
images. The final SWarped NICMOS F160W image with 0703
pixel scales is shown in Figure 4.

5.3. PSF Modeling

In this subsection, we describe the procedure for obtaining
the PSFs for each of the ACS and the NICMOS data sets.

13 A package developed by Emmanuel Bertin at Institut d’ Astrophysique de
Paris for resampling and coadding together FITS images.
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5.3.1. ACS PSF

The ACS PSF is both spatially and temporally varying (e.g.,
Rhodes et al. 2007). One source of temporal variation is the
“breathing” of the telescope while it orbits, which causes the
focal length (and, hence, the PSF) of the telescope to change.
Instead of adopting a universal PSF, we take the approach of
modeling several PSFs using different means, and quantitatively
comparing them using the Bayesian analysis described in
Section 2.2.1. This has the advantage of using the data (the
observed image) to rank the models. For each of the two drizzled
ACS images, we create five models for the PSF either based
on the TinyTim package (Krist & Hook 1997) or from the
unsaturated stars in the field: (1) drizzled PSF (“PSF-drz”’) from
a set of TinyTim simulations (following Rhodes et al. 2007), (2)
single (nondrizzled) TinyTim PSF (“PSF-f3”) with a telescope
focus value of —3, (3) the closest star (“PSF-C”) located at ~ 9”
in the northeast direction from B1608+656 in the drizzled ACS
field with a Vega magnitude of 21.3 in F814W, (4) bright star #1
(“PSF-B1”) that is located at ~1.9 southwest of B1608+656 in
the drizzled ACS field with a Vega magnitude of 18.7 in F814W,
and (5) bright star #2 (“PSF-B2”) that is located at ~ 1.6 south
of B1608+656 in the drizzled ACS field with a Vega magnitude
of 19.1.

The TinyTim frame(s) were drizzled and resampled to pixel
sizes of 0703 to match the resolution of the ACS images. We
keep in mind that the TinyTim PSFs (PSF-drz and PSF-f3) may
be insufficient due to the time-varying nature of the PSF and
the aging of the detector since the TinyTim code was written.
We expect the closest star to B1608+656 (PSF-C) to be a
good approximation to the PSF because the spatial variation
of the PSF across ~ 9” should be negligible and any temporal
variations are the same as in the lens system. However, this
closest star is not bright enough to see the secondary maxima
in the PSF, so we additionally include two of the brightest stars
in the drizzled field mentioned above. For each of the stars in
F606W and F814W, we make a small cutout around the star
(25 x 25 pixels for PSF-C, 51 x 51 pixels for PSF-B1, and 41 x
41 pixels for PSF-B2) and center it on a 200 x 200 grid, which
is the size of the drizzled science image cutouts of B1608+656
that are used for the image processing.

5.3.2. NICMOS PSF

The NICMOS PSF is thought to be more stable, and thus we
assume a TinyTim model for it. The output TinyTim PSF is in
the CCD frame of NICMOS with pixel size 07043. As with the
F160W science image, the PSF was SWarped to be aligned with
the ACS images with 0703 pixels. Since there is only one PSF
model for NICMOS, PSF specifications throughout the rest of
this paper refer to the ACS PSFs.

5.4. Dust Correction

With observations in two or more wavelengths, we can correct
for the dust extinction using empirical dust extinction laws.
We adopt the extinction law of Cardelli et al. (1989) with the
following dust extinction ratios at the redshift of the lens z4 =
0.63 for Ry = 3.1 (Galactic extinction): Apgoew/Ay = 1.56,
AF814W/AV = 114, and AF160W/AV = 041, where A)\ is
the extinction (difference between the observed and intrinsic
magnitudes) at wavelength A. These dust extinction ratios agree
with the values from the extinction law in Pei (1992) to within
1.5%. In order to correct for the extinction, we need to know
the intrinsic colors of the objects (details in Section 5.4.1). For
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Figure 4. HST NICMOS F160W image that is SWarped to aligned to the ACS
frame with a 0”03 pixel size. The white dots indicate the centroid positions of
the images.

each color type of object (the lens galaxies, the source galaxy,
and the AGN of source galaxy), we denote the intrinsic color
by Or = (M F inwrinsic — M1, intrinsic)» where FF = 1,..., Ny is
in sequence from the reddest to the bluest wavelengths (by
construction Q7 = 0), and N, is the number of wavelength
bands used for dust correction. Combining the dust extinction
ratios and the definition of intrinsic colors, we can model
the observed magnitudes at each image pixel in each of the
wavelength bands F in terms of Ay and the intrinsic magnitude
of the reddest wavelength band m; iinsic s

MFp = MF observed = M 1,intrinsic T Or +Avkr +np, (16)

where kr = Ap/Ay are constants given by the extinction law
and np is the noise in the data of wavelength band F. We can
solve for Ay and m jnyinsic at each image pixel by minimizing
the following Xc%us[ for each pixel:

Ny
X(?usl = Z(mF — MY intrinsic — QF - AVkF)z. (17)
F=1

We have weighted the images of the different bands equally
because the uncertainty associated with mp is negligible com-
pared to that of QF, and the uncertainties in QF are of comparable
magnitudes for the different bands F relative to the reddest. The
solution that minimizes Xfust is

vl =) )

- (2e) (2o
- XF:kaF +2ijFQFV

)
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Figure 5. From left to right: the derived color maps F6O6W —F814W, F606W—F160W, and F814W-F160 using PSF-B1.

and
1
e = (sz Y0 -y AVkF) o)
F F F
where the sums over F go from 1, ..., N,. We emphasize that

Equations (18) and (19) give the Ay and m inyinsic at each
pixel. Since Ay varies from pixel to pixel (depending on the
amount of dust seen in that pixel), the various Ay values of all
pixels provide a dust map. Similarly, the m 1 intrinsic values of all
pixels give the dust-corrected image in the reddest wavelength
band. The resulting values of 71} inginsic and the intrinsic colors
yield the intrinsic (dust-corrected) magnitudes in the other bands
MF intrinsic, Where F' = 2, ..., N,. For any one band F, we can
then construct the diagonal dust matrix K in Equation (13) whose
nonzero entries are 10~ 0-44vkr

5.4.1. Obtaining the Intrinsic Colors

The dust correction method outlined above requires the in-
trinsic colors to be determined from the color maps. To construct
the color maps, we need to unify the different resolutions of the
images in different bands (due to the wavelength dependence
of the PSF). We do so by deconvolving the F606W, F814W,
and F160W images using their corresponding PSFs, and recon-
volving the images with the F§14W PSF for each set of the five
ACS PSFs and the single NICMOS PSF described in Section 5.3.
Reconvolved images are preferred to deconvolved images, be-
cause the latter show small-scale features (of a few pixels’ size)
that are artificial due to the amplification of the noise during the
deconvolution process. We select the F814W PSF for the re-
convolution because F814W will be used for the lens potential
modeling, due to its high S/N compared with F160W and its
less severe dust extinction compared with FOO6W. In working
with the reconvolved images, we assume that the dust varies
on a scale larger than the F814W PSF, which is true for the
regions near the Einstein ring. For the deconvolution, we use
IDL’s max_entropy iterative routine that is based on the algo-
rithm by Hollis et al. (1992). We were unable to deconvolve the
ACS F814W image using PSF-f3. This suggests that PSF-f3 is a
bad model, which we have expected due to temporal variations
in the PSF. PSF-f3 is a single-epoch PSF whereas the F§14W
image was drizzled from multiple exposures. We, therefore, dis-
card this PSF model.

For each set of PSF models (PSF-drz, PSF-C, PSF-BI,
and PSF-B2 for ACS, and TinyTim PSF for NICMOS), we
construct the color maps F606W—F814W, F606W—F160W,
and F814W—F160W from the reconvolved F606W, F814W,
and F160W images, respectively. Figure 5 shows the three color
maps derived for PSF-B1. Regions with bluer color slightly west
of G1 are shown in all three color maps. Since the centroid of
this blue region is offset from the centroid of G1, we believe
that this blue region arises from differential reddening and not
from intrinsic color variations within G1, which is an elliptical
galaxy (Surpi & Blandford 2003). Since elliptical galaxies
typically contain little dust, Koopmans & Fassnacht (1999)
and Surpi & Blandford (2003) suggested that the dust comes
from G2, likely a dusty late-type galaxy, through dynamical
interaction. This may explain why the spectrum of G1 shows
signatures of a young stellar population plus a poststarburst
population (Dressler & Gunn 1983; Myers et al. 1995; Surpi &
Blandford 2003; Koopmans et al. 2003): gas from G2 may have
been transferred to G1, where the tidal interactions may have
triggered star formation.

The color maps also show regions of bluer color around im-
ages C and D, and we again believe that these are mostly dif-
ferential reddening due to the misalignment of the image po-
sitions and the centroids of these blue regions, especially in
F606W—F160W and F814W—F160W. Furthermore, we find
more dust at the crossing point of the isophotal separatrix
(the figure-eight-shaped intensity contour) of the image pair
A—C. This is encouraging, as lensing models indeed predict
the crossing point to be closer to image A (see discussion in
Section 5.4.2). However, these bluer regions near images C and
D may also arise from the lensed source being intrinsically bluer
than the surrounding emission. The F§14W—F606W color for
these blue regions is consistent with typical star-forming galax-
ies (e.g., Coleman et al. 1980). In the F6O6W—F814W color
map, there is a faint ridge of redder color connecting images
A and C. This may be due to the asymmetry in the stellar PSF
model (with the star position not exactly centered within a pixel),
which would cause the F606W and F814W isophotes to shift
relative to each other after the deconvolution and reconvolu-
tion. For the color maps from the other PSF models, we find
that the color maps from PSF-C and PSF-B2 look similar to
that from PSF-B1 with varying amounts of noise due to vary-
ing brightnesses of the stellar PSFs. PSF-drz gave color maps
that differ from those from the stellar PSFs (PSF-C, PSF-B1,
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Figure 6. Left-hand panel: the Ay map obtained from dust correction with PSF-B1 using all three bands of images and the intrinsic colors listed in Table 3. The
galactic dust extinction law was assumed. The dust lane through images C, G2, G1, and D is visible. Right-hand panel: dust-extinction-corrected F§14W image using
PSF-B1 and the three-band dust map in the left-hand panel. Compared to the right-hand panel in Figure 3, the light profile of G1 is more elliptical and the crossing
point of the isophotal separatrix of images A and C has shifted toward A after the dust correction.

and PSF-B2) because PSF-drz, especially in the F606W band,
did not exhibit a single brightness peak but a string of equal
brightness pixels at the center due to frame alignment difficulties
during the drizzling process. This caused the brightest pixels in
the Einstein ring to shift by ~ 1 pixel after the deconvolution and
the reconvolution process in F606W, and created artificial sharp
highlights tracing the edge of the ring in the F6OO6W—F814W
color map. As will be seen in Section 5.6, this leads to PSF-drz
and its resulting dust map giving a lower goodness of fit in the
lens inversion, and hence being ranked lower compared with
other models.

In each of the color maps, we define three color regions for
the three color components: one within the Einstein ring for the
lens galaxies (we assume G1 and G2 to have the same colors),
one for the Einstein ring of the lensed extended source, and one
for the lensed AGN (core of the extended source). Following
Koopmans et al. (2003), we determine the bluest color within
each region, assume that this part of the region was not absorbed
by dust, and adopt this color as the intrinsic color. This assumes
that each of the three components has a constant intrinsic color.
This would allow us to obtain the differential reddening for each
of the components across the lensed image; absolute reddening
is not needed because a uniform dust screen does not affect lens
modeling. Table 3 lists the intrinsic colors for each of the three
pairs of color maps. The intrinsic colors of F606W—F814W
are not identical to the difference between F60O6W —F160W and
F814W—F160W, but agree within the uncertainties (0.02-0.1).

5.4.2. Resulting Dust Maps

With the intrinsic colors determined for each PSF model, we
obtain two dust maps (Ay maps) using (1) only the ACS F606W
and F814W images and (2) the ACS F606W and F814W images
together with the NICMOS F160W image. In this way, we can
assess whether the inclusion of the lower S/N NICMOS image
(with the much broader PSF) improves the dust correction.

The left-hand panel of Figure 6 is the resulting Ay dust map
derived using PSF-B1 and using images in all three bands. The
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Figure 7. Crossing isophotes of the B1608+656 Einstein ring. Shown here is
the dust-corrected and galaxy-subtracted F814W image (solid contours), with
the critical curves of the SPLE1+D (isotropic) potential model (Koopmans et al.
2003) overlaid (dashed curves). The inset shows a “zoomed-in” view of the
region between images C and A; here, the dotted curves in the zoomed-in panel
are the intensity contours of the galaxy-subtracted F814W image without dust
correction. After dust correction, the crossing point of the isophotal separatrix
(the center of the figure-eight isophote) is shifted toward the critical curve,
indicating successful dust correction.

dust map shows the east-west dust lane through the system
(absorbing light from C, G2, G1, and D) that is visible in the
original drizzled ACS F606W and F814W images. There is
little extinction near images A and B, but there are faint rings
surrounding the images that are mostly due to imperfect F160W
deconvolution. We note that the low S/N exterior to the Einstein
ring results in the dust map being noisy in this area. We make
sure that these noisy areas are not included in the Bayesian
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Figure 8. Sérsic lens galaxy light profile fitting to the dust-corrected F814W image, with PSF-B1 and its corresponding three-band dust map, using GALFIT. The
left-hand panel shows the best-fit Sérsic light profiles with Sérsic indices (nG1, ng2) = (3, 4). The middle panel shows the dust-extincted galaxy light profiles, which
is the left-hand panel with the dust extinction added back in. The right-hand panel shows image residual (difference between the F814W drizzled image in Figure 3

and the middle panel) with misfit near the cores of the lens galaxies of ~ 25%-35%.

Table 3
Intrinsic Colors of the AGN, Einstein Ring, and Lens Galaxies in B1608+656

F606W—F814W  F814W—-F160W  F606W—-F160W

PSF-drz AGN 0.50 1.4 1.91
Ring 0.70 1.5 2.20
Lens 0.84 1.0 1.88
PSE-C AGN 0.78 1.3 2.10
Ring 0.84 1.5 2.30
Lens 1.04 1.0 2.05
PSF-B1 AGN 0.72 1.1 1.85
Ring 0.76 1.3 2.10
Lens 1.04 0.82 1.85
PSF-B2  AGN 0.70 1.17 1.99
Ring 0.80 1.3 2.10
Lens 1.01 0.85 1.92

Notes. The intrinsic colors are based on color maps derived from the four
ACS PSF models (PSF-drz (drizzled TinyTim), PSF-C (closest star), PSF-B1
(bright star #1), and PSF-B2 (bright star #2)) and the single NICMOS TinyTim
PSF. The intrinsic colors for each of the three color regions are determined
from the bluest colors in the respective region. The uncertainties on the intrinsic
colors vary from 0.02 to 0.1. The higher uncertainties are associated with the
F160W image, which has a lower S/N.

evidence computations in Sections 5.6 and 6. The right-hand
panel of Figure 6 is the resulting dust-corrected F§14W image
that exhibits two signs of proper dust correction: the correctly
shifted crossing point of the isophotal separatrix of the image
pair A—C, as shown more clearly in Figure 7, and the smoother
lens galaxy profiles. As a result of recovering the absorbed light,
the dust-corrected image has higher intensity values than the
uncorrected image. Therefore, we create a weight map for the
dust-corrected image by scaling the multidrizzle weight image
in order to keep the S/N of each pixel the same (before and
after dust correction). This “dust-corrected weight image” will
be used in the next section for determining the lens galaxy light.

The dust maps obtained from the other PSF models with
or without the inclusion of the NICMOS image show similar
features except for the following two dust maps.

1. The ACS-only (no NICMOS) dust map from PSF-B2
showed a faint ridge of dust connecting images A and C. As
explained, this may be due to the asymmetrical/bad PSF
model. Since the dust map otherwise exhibits the correct
features, we keep this dust map for the next analysis step.

2. The ACS-only dust map from PSF-drz showed prominent
artificial lensing arc features due to the ~ 1 pixel offset
in the image positions/arcs in the deconvolved and recon-
volved F606W and F814W images, respectively. Therefore,
we discard this dust map of the ACS-only images for PSF-
drz, but keep the dust map derived from using all three
bands (that includes NICMOS).

After discarding the ACS PSF-f3 and the ACS-only dust map
from PSF-drz, we have a total of seven dust maps (and resulting
dust-corrected F814W images). All of these are reasonable dust
corrections to use since they are derived using representative
PSFs and intrinsic colors. We will compare these dust maps and
PSF models in Section 5.6.

5.5. Lens Galaxy Light

For each of the seven resulting dust-corrected F§14W images
in Section 5.4.2 and its corresponding PSF, we create an
elliptical mask for the lens galaxies’ region that excludes the
Einstein ring and fit the lens galaxies’ light to elliptical Sérsic
profiles using GALFIT (Peng et al. 2002). In particular, we
impose the Sérsic indices to be one of the following pairs:
(ng1, ng2) = (1, 1), (2,2), (3, 3), (3,4), (4, 3), (4, 4). There are
more pairings with n = 3 and n = 4 since previous works
by, for examples, Blandford et al. (2001) and Koopmans et al.
(2003) found G1 to be well described by n = 4 (de Vaucouleurs
profile). With the dust-corrected weight image, we obtain a
reduced x? value for each of the profile fittings. For each dust-
corrected F814W image, we pick the Sérsic index pair with
the lowest reduced x? from the fit (top two pairs in the case
of PSF-drz) and list it in Table 4. As an illustration, Figure 8
shows the GALFIT Sérsic (ngi, ngz) = (3, 4) results of the
dust-corrected F814W image using the three-band dust map
from PSF-B1. The dark (light) patches in the upper right-
hand corner of the middle (right-hand) panel result from
the noisy dust map due to low signal to noise in this area.
Apart from this area and the lens galaxies’ cores, most of
the observed lens galaxies’ light matches the dusted Sérsic
profiles in the middle panel, as shown in the residual map
in the right-hand panel. The misfit near the cores could be
due to intrinsic color variations in the lens galaxies, the dust
screen assumption, PSF imperfections, and/or inapplicability
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Table 4
Best-Fitting Sérsic Light Profiles for the Lens Galaxies G1 and G2 for the
Seven Different Dust-Corrected F814W Images Based on Different PSFs and

Dust Maps
PSF Dust Map Sérsic Indices (ngy, ng2) Reduced xlzens light
drz Three-band 3,4) 4.48
drz Three-band A3,3) 4.53
C Three-band 3,4) 5.11
C Two-band 3,3) 6.13
B1 Three-band A3,4) 5.53
Bl Two-band 2,2) 7.16
B2 Three-band 2,2) 5.95
B2 Two-band 2,2) 8.19

Notes. In the PSF column, “drz” = drizzled TinyTim, “C” = closest star, “B1” =
bright star #1, and “B2” = bright star #2. In the dust map column, “two-band”
represents the dust map obtained from just the two ACS bands, and “three-band”
represents the dust map obtained from the two ACS and the one NICMOS bands.

of a single Sérsic model at the center. Nonetheless, accurate
light fitting near the cores of the lens galaxies is not important;
it is for the isophotes of the Einstein ring that we need to have
accurate dust and lenses’ light corrections for the lens modeling.
For the ring, the dust screen assumption in our approach is
valid.

5.6. Comparison of PSF, Dust, and Lens Galaxy Light Models

Following the method outlined in Section 4, we can use
the Bayesian evidence from the source-intensity reconstruction
to compare the different PSF (B), dust (K) and lens galaxy
light (I) models. For each set of B, K, and I, we obtain the
corresponding galaxy-subtracted F814W image (d — B-K-1)
that is analogous to the one shown in the right-hand panel
of Figure 8. We then make a 130 x 130 pixel cutout of the
0703 galaxy-subtracted image and use the SPLE1+D (isotropic)
lens potential model in Koopmans et al. (2003), which is the
most up-to-date simply parameterized lens potential model for
B1608+656, for the source-intensity reconstruction. Due to the
source and image pixelizations, we include the regridding error
(described in Section 5.2.1) in the image covariance matrix.

We select an annular region enclosing the Einstein ring
and use the data inside this region for the source-intensity
reconstructions for each set of the PSF, dust, and lens galaxy
light models. The source grid, which we fix to have 32 x 32
pixels, has pixel sizes that are ~ 07022 to cover the marked
elliptical annular region when mapped to the image plane.
This is sufficient for achieving reasonable reconstructions and
is computationally manageable. In the inversions, we reduced
the PSF to 15 x 15 pixels to keep the matrices such as B
reasonably sparse for computing speed. We try three forms
of regularization: zeroth-order, gradient and curvature (e.g.,
Appendix A of Suyu et al. 2006).

Table 5 lists the suite of PSF, dust, and lens galaxy light
models we obtained in the previous section. We label the
different models by numbers from 1 to 11 in the left-most
column. Models 9 and 10 correspond to the mixing of the
dust maps and lens galaxy light profiles derived from PSF-
B1 with PSF-C and vice versa. Model 11, which is included as
a consistency check, uses PSF-B1 and has no dust correction
applied. For each set of models, the source-intensity distribution
for B1608+656 is reconstructed. As an example, Figure 9
shows the results of the source reconstruction with gradient
regularization using PSF-B1, its corresponding three-band dust
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Table 5
PSF, Dust, and Lens Galaxies’ Light Model Comparison Based on Bayesian
Source Inversion

PSF Dust Map Sérsic (ng1,ng2) Reg. Type Log Evidence

(x10%)
1 drz Three-band 3,4 grad 1.49
2 drz Three-band A3,3) grad 1.48
3 C Three-band 3,4) grad 1.60
4 C Two-band A3,3) zeroth 1.40
5 Bl Three-band 3,4 grad 1.56
6 Bl Two-band 2,2) zeroth 1.10
7 B2 Three-band 2,2) grad 1.55
8 B2 Two-band 2,2) zeroth 1.23
9 C B1/three-band 3,4) zeroth 1.56
10 Bl C/two-band 3,3) zeroth 1.36
11 Bl . 3,4) zeroth 1.27

Notes. For each set of the PSF, dust, and lens galaxy light profiles derived
in Sections 5.3-5.5, the Bayesian log evidence value is from the source-
intensity reconstruction using the SPLE1+D (isotropic) model in Koopmans
etal. (2003). The uncertainty in the log evidence value due to source pixelization
is ~ 0.03 x 10*. In the PSF column, “drz”=drizzled TinyTim, “C”=closest star,
“B17”=bright star #1, and “B2”=bright star #2. In the dust map column, we list
“two-band” for the dust map obtained from just the two ACS bands and “three-
band” for the dust map obtained from the two ACS and the one NICMOS bands.
Unless otherwise indicated in the dust map column, the PSF model used for the
dust map derivation was the same as the corresponding PSF model in the PSF
column that was used for source reconstruction. For completeness, we restate
the Sérsic indices in Table 4 in the lens galaxy light profile column, which were
obtained for the corresponding dust maps and PSFs specified in the dust map
column. The column of “Reg. Type” refers to the preferred type of regularization
for the source reconstruction, based on the highest Bayesian evidence value. It
can be one of three types: zeroth-order, gradient, or curvature.

map, and the resulting Sérsic (ngi,ng2) = (3,4) galaxy
light profile. The top left-hand panel shows the reconstructed
source-intensity distribution that is approximately localized, an
indication that the lens potential model is close to the true
potential model. In the top-middle panel, the pixels that are
far from the source but are inside the caustics have lower lo
error values than the pixels outside the caustics due to higher
image multiplicity inside the caustics. The bottom right-hand
panel shows significant image residuals (the reduced x? is 1.9
inside the annulus), a sign that the PSF, dust, lens galaxy light,
and/or the lens potential models are not optimal. In Section 6,
we will use the pixelated potential correction scheme, which
is more suitable for interacting galaxy lenses, to improve the
simply parameterized SPLE1+D (isotropic) model.

The source-intensity reconstructions using other PSF and lens
galaxy light models with three-band dust maps give overall
similar inverted source intensities and image residuals, but the
source intensities can be more or less localized and the mag-
nitude and structures of the image residuals vary for different
model sets. However, the source-intensity reconstructions using
models with two-band dust maps result in source intensities that
are not localized, and the image residuals show surpluses of
light in the ring region and deficits of light in the lens galaxy
region (corresponding to the color regions we marked for ob-
taining the intrinsic colors). The reason is that with only two
bands, the resulting dust-corrected F§14W image is highly sen-
sitive to relative shifts between the F6O6W and F814W images
(due to an imperfect PSF model, deconvolution, and reconvo-
lution) and errors in the modeled intrinsic colors. The abrupt
change in the modeled intrinsic colors across the boundaries of
the color regions creates artificial surpluses or deficits of dust-
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Figure 9. Source-intensity reconstruction of B1608+656 (assuming model #5 in Table 5). Top panels from left to right: the reconstructed source-intensity distribution
with the caustic curves of the SPLE1+D (isotropic) model overlaid, the 1o error for the source-intensity values, the S/N of the reconstruction (i.e., the ratio of the top
left-hand to the top-middle panel). Bottom panels from left to right: the observed F814W galaxy-subtracted image, the reconstructed image using the reconstructed
source in the top left-hand panel, and the normalized image residual (i.e., the map of the difference between the bottom left-hand and the bottom middle panels, in

units of the estimated pixel uncertainty from the data image covariance matrix).

corrected light near the boundaries. This effect is suppressed
with the addition of the F160W image because the F160W
image suffers relatively little extinction, and the error due to
misalignment in the images and abrupt change in the modeled
intrinsic colors is reduced when one has more than two bands.
A few tests suggest that the error in the dust-corrected image
due to the range of intrinsic colors listed in Table 3 overwhelms
the error associated with the foreground dust screen assumption
for the lens galaxy light.

The source-intensity reconstruction in Model 11 with no dust
correction shows significant image residuals in the extended
ring, with overall surpluses of light surrounding images A
and B and deficits surrounding images C and D. The source
intensity is also poorly reconstructed, being nonlocalized and
noisy. This illustrates the importance of dust correction for the
initial SPLE1+D (isotropic) model.

5.6.1. Results of Comparison

Table 5 summarizes the results of model comparison. The
“Reg. Type” column denotes the preferred type of regularization
for the source reconstruction based on the highest Bayesian
evidence value (Suyu et al. 2006). It can be one of the three
types that we use: zeroth-order, gradient, and curvature. The
last column lists the log evidence values from the inversions.
Assuming the different models to be equally probable a priori,
we use these evidence values for model comparison. The
log evidence values range from 1.1 x 10* to 1.6 x 10* with
uncertainties of ~ 0.03 x 10* due to the finite source resolution.

The list shows that the three-band dust models have higher
evidence values than the two-band dust models. This is attributed

to the two-band dust models showing image residuals from the
aforementioned artificial surpluses and deficits of light in the
dust-corrected image. The inclusion of the NICMOS F160W
image to the ACS images (F606W and F814W) for the dust
correction is, therefore, crucial due to (1) the proximity in the
wavelengths of the ACS images and (2) the reduction in the error
associated with image misalignments and simplistic intrinsic
color models.

The three-band dust models also have higher evidence values
than the no-dust model. This further validates the three-band
dust correction, as already indicated by Figure 7. The evidence
value of the no-dust model is in midst of the values for the
two-band dust models, suggesting that the systematic effects
in the two-band dust maps are comparable to the corrections
that the dust maps are meant to achieve, thus leading to little
improvement in the lens modeling.

The difference between the evidence values in Models 1 and
2 (where the models only differ in the Sérsic light profiles) is,
in general, smaller than the difference between one of these
two models and another PSF/dust model. Therefore, the source
reconstruction (part of lens modeling) seems to be less sensitive
to the galaxy light profiles than the PSF/dust models. This is
in agreement with our finding that the dust-corrected image
depends more on the PSF and the intrinsic color models than
on the form of the lens galaxy light and the dust associated
with the lens galaxies. Models 1 and 2 with PSF-drz have log
evidence values on the low side of the collection of models with
three-band dust maps, which was expected with PSF-drz not
having a single brightness central peak due to misalignments
in the drizzling process. The other models with three-band dust
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maps (Models 3, 5, 7, and 9) have effectively the same evidence
values within the uncertainties. The models with two-band dust
maps (Models 4, 6, 8, and 10) lead to a range of evidence values
with the PSF-C dust map being preferred to the PSF-B1 and
PSF-B2 dust maps. The two-band dust maps suggest that the
shape of the primary maximum in the PSF is more important
in the modeling than the inclusion of secondary maxima since
PSF-C, which we expect to have a more accurate shape for
the primary PSF maximum than PSF-B1 and PSF-B2, does not
have the secondary maxima whereas PSF-B1 and PSF-B2 do.
The asymmetry in the PSF due to the star not being centered
on a single pixel may also explain the less-preferred PSF-B1
and PSF-B2. The distinction between the various stellar PSFs
vanishes with the three-band dust maps, possibly due to the
higher amount of noise in the three-band dust map with the
inclusion of the lower S/N NICMOS image. In this case,
the effects of the PSF variations across the field are suppressed.

All models preferred either the zeroth-order or gradient form
of regularization, but never the curvature form; however, we
mention that the difference in the log evidence values between
the different regularization schemes (< 3 x 10?) are on the order
of the uncertainties due to source pixelization, and the resulting
reconstructions for different types of regularizations are almost
identical. This is because differences in evidence values between
models are currently dominated by changes in goodness of fit
rather than subtle differences between the prior forms. Only
when the image residual is reduced will the prior (regularization)
begin to play a greater role in avoiding the reconstruction to fit
to noise in the data by keeping the source model simple.

This section has illustrated a method of creating sensible
PSF, dust, and lens galaxy light models for the gravitational
lens B1608+656. We have obtained a representative sample of
models, and have compared these models quantitatively. This
collection of PSF, dust, and lens galaxy light models leads to
image residuals that cannot be beaten down further unless we
improve the SPLE1+D (isotropic) simply-parameterized lens
potential model by Koopmans et al. (2003) to take into account
the two inferacting galaxy lenses. The pixelated potential
reconstruction of B1608+656 is the subject of Section 6.

6. PIXELATED LENS POTENTIAL OF B1608+656

We reconstruct the lens potential for each set of the PSF,
dust, and lens galaxies’ light in Models 2—11 in Table 5. We
describe in detail the potential reconstruction using Model 5,
which is one of the four models that, within the uncertainties,
have the highest Bayesian evidence value before the potential
correction. At the end of the section, we discuss the differences
in the potential reconstruction between the various PSF, dust,
and lens galaxies’ light models.

To reconstruct the lens potential of B1608+656, we use a
130 x 130 pixel cutout of the drizzled ACS/F814W image with
the pixel size 0703 shown in Figure 3. The galaxy-subtracted
F814W image (= d — B-K-/)is a 130 x 130 subimage of the
right-hand panel in Figure 8 with 200 x 200 pixels.

We follow the potential reconstruction method that was shown
to succeed in Section 3. For the initial lens potential model,
we use the SPLE1+D (isotropic) model from Koopmans et al.
(2003). We perform nine iterations (labeled as 0-8) of pixelated
potential corrections on B1608+656. For each iteration, we first
reconstruct the source intensity on a 32 x 32 grid with pixel
sizes of 07022. The source region is chosen so that it maps
to a completely joined annulus on the image plane (so that we
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can determine the relative potential difference between images).
As in Section 5.6, the PSF is reduced to a 15 x 15 matrix to
keep the inversion matrices sparse (and computation time low).
Furthermore, we use only the curvature type of regularization
for the source reconstruction to reduce computation time and
to have regularized source-intensity gradients for the potential
corrections. The source inversions are over-regularized in the
early iterations to ensure a smooth resulting source for taking
gradients. The source over-regularization factors start at 1000
and are gradually decreased to 1 at iteration = 8. With the
resulting source-intensity gradients and intensity deficits from
the source reconstruction, we perform the potential correction
on a grid of 30 x 30 pixels. We use the curvature form of
regularization for each potential correction iteration. To keep
the corrections linear, the potential corrections are also over-
regularized with the regularization constant (w) set at 10 times
the value where uEsy, peaks, as in Section 3. The corrected
potential has the midpoints in the left, bottom, and right parts
of the annular reconstruction region fixed to the initial potential
model.

The top row of Figure 10 shows the results of iteration = 0 of
source and potential reconstruction. The left-hand panel shows
the reconstructed source that has been over-regularized by a
factor of 1000. The caustics are those of the initial SPLE1+D
(isotropic) model. The source is localized and compact, a sign
that the initial SPLE1+D (isotropic) potential we started from is
close to the true model. The middle-left panel shows significant
image residuals that are to be corrected, especially near the
cores of the images due to the over-regularization of the source-
intensity distribution. The annular region marks the region of
data that we use for the evidence computation in the final
iteration of source reconstruction. Using the gradient from the
reconstructed source and the intensity deficit, the middle-right
panel shows the potential reconstruction of iteration = 0 and the
right-hand panel shows the fraction of the accumulated potential
corrections relative to the initial model.

The middle row of Figure 10 shows the result of iteration = 2
of source and potential reconstruction. Compared to iteration =
0 that has the same over-regularization factors, the source
reconstruction is slightly smoother, the image residual has
decreased, and the potential correction is not as large.

In the iterations from 3 to 8, the potential corrections are
small; therefore, the source reconstruction and image residual
change only gradually during these iterations. The bottom row
of Figure 10 shows the results of iteration = 8 (the last iteration).
The reconstructed source in the left-hand panel has more
background noise than iteration = 2 because the source is now
optimally regularized. The source after the potential correction
is more localized than that before the potential correction in
Figure 9, which is a good indication that the reconstructed
potential is closer to the true potential (up to the mass-sheet
degeneracy). The normalized image residual in the middle left
panel shows an overall decrease in the image residual compared
with that in Figure 9. There remains intensity deficit near the
image locations since the intensities of point-like images do
not generally match due to the time delays and variability. This
misfit can also be due to the undersampling of the PSF. There is
also remaining image residual near image C that is likely due to
imperfections in the dust correction. Nonetheless, the reduced
x? inside the annulus is 1.1 (keeping in mind the unscaled
nature of our image pixel uncertainties). The right-hand panel
in the bottom row of Figure 10 shows that the final accumulated
potential correction relative to the initial model is only ~ 2%.
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Figure 10. Results of the iterative pixelated potential reconstruction of B1608+656. Top row, which shows the results of iteration = 0: the left-hand panel shows the
over-regularized curvature source reconstruction, the middle-left panel shows the normalized image residual (in units of the estimated pixel uncertainty from the data
image covariance matrix) based on the inverted source, the middle-right panel shows the potential corrections on an annulus using the curvature form of regularization,
and the right-hand panel shows the accumulated potential corrections relative to the initial potential model. The source is localized, an indication that we are close to
the initial model, but not at the true potential model because significant image residuals are present. Middle row, which shows the results of iteration = 2: the panels
are arranged in the same way as in the top row. Compared to iteration = 0, the image residuals and the potential corrections are both smaller. Bottom row, which shows
the results of iteration = 8: the panels are arranged in the same way as in the top row. The resulting source of the corrected potential is more localized than that of the
uncorrected potential in Figure 9, and the image residual corresponds to a reduced x2 of 1.1. The accumulated potential correction is only ~ 2%.

The structure of the accumulated potential correction may seem
to resemble the simulation in Figure 1; however, this does not
mean that the potential correction in B1608+656 corresponds to
a mass clump as in the simulation. We point out that the maps
of the potential corrections that generally look similar (due to
the fixing of the three points in the annulus) may lead to very
different convergence maps.

The potential reconstruction described above is for Model 5.
After repeating the procedure for the other models, we find
that the image residual and source reconstruction in the final
iteration for the other three-band dust models are similar in
feature to Model 5. In contrast, the two-band dust maps’ source
reconstruction continue to show nonlocalized source intensities
with spurious light pixels outside of the main component.
Furthermore, parts of the artificial surpluses or deficits of the
dust-corrected light near the color boundaries remain after the
potential correction. For Model 11 with no dust, the potential
corrections lead to a localized source with image residuals that
show misfit only near the image cores and locations of the dust
lane.

These results of the potential reconstructions can be quantified
using the Bayesian evidence values from the source reconstruc-
tion of the final corrected potential. Table 6 lists the evidence
values for Models 2 to 11. The uncertainties in the evidence
values are due to the source pixelization and the possible range
of over-regularization for the source-intensity reconstruction
and lens potential correction. We explored over-regularization
factors in the range between 1 and 1000 for the source inten-
sity, and various factors within 30 of the regularization con-
stant 4 that corresponds to the peak of Esy for the potential
correction. The table shows that the three-band dust maps are
consistently ranked higher than the two-band dust maps, in-
dicating the importance of including the NICMOS image for
the dust correction. All three-band dust maps give the same
evidence values within the uncertainties, indicating that the var-
ious PSF and three-band dust models are all acceptable. Fur-
thermore, the resulting Fermat potential differences between
the images for these models agree within the uncertainties.
Model 11 with no dust leads to the same evidence value as
the values for three-band dust models. The predicted Fermat



296 SUYUET AL.

Table 6
Ranked Model Comparison after Potential Reconstruction
Model PSF Dust Log Evidence
(x10%)

5 B1 Three-band 1.77 £ 0.05

9 C B1/three-band 1.76 £0.04

3 C Three-band 1.76 £+ 0.05
11 Bl 1.76 £ 0.05

2 drz Three-band 1.75 £ 0.05

7 B2 Three-band 1.75 £0.05
10 B1 C/two-band 1.61 £ 0.05

4 C Two-band 1.58 £0.05

6 Bl Two-band 1.41 £ 0.05

8 B2 Two-band 1.40 £ 0.05

Notes. In the PSF column, “drz” = drizzled TinyTim, “C” = closest
star, “B1” = bright star #1, and “B2” = bright star #2. In the dust map
column, “two-band” represents the dust map obtained from just the
two ACS bands, and “three-band” represents the dust map obtained
from the two ACS and the one NICMOS bands. The uncertainty in
the log evidence from the source-intensity reconstruction is due to
the source pixelization and the possible range of over-regularization
for the source-intensity reconstruction and lens potential correction.
Within the uncertainties, Models 5, 9, 3, 11, 2, and 7 have the highest
evidence values. Note that the three-band dust maps are ranked
higher than the two-band dust maps.

potential differences between the images for Model 11 are also
in similar ranges as those of the three-band dust models. This
shows that the global structure of the lens potential remains rel-
atively intact after the dust correction to give similar predicted
Fermat potential values, even though local pixelated potential
corrections are flexible enough to mimic the effects of dust ex-
tinction. It is encouraging that the dust extinction in B1608+656
does not alter the surface brightness in a systematic way as to
change the global structure of the lens potential. This robust-
ness in the global structure of the lens potential is important for
inferring the value of the Hubble constant.

In summary, for the top PSF, dust, and lens galaxies’ light
models, the pixelated potential correction scheme was success-
fully applied to B1608+656 leading to potential corrections of
~ 2%. This is only a small amount of correction, indicating
that the smooth potential model in Koopmans et al. (2003) is
remarkably good. The resulting source is also well localized.

This completes the dissection of the gravitational lens
B1608+656. The image residual is not fully eliminated pos-
sibly due to imperfect PSF, dust, lens galaxies’ light modeling,
variability in the point source intensities, finite source resolu-
tion, and/or undersampled PSF. In Paper II, we use the models
in Table 6 to derive H, and to estimate its uncertainty associated
with the modeling.

7. MASS AND LIGHT IN THE B1608+656 LENS SYSTEM

The clean dissection of the lens system in the previous
sections allows us to study the mass and light in G1 and G2.

Since the amount of potential correction is small, we can
safely neglect the implied corrections when estimating the mass
associated with the lens galaxies. Integrating the SPLE1+D
(isotropic) surface mass density of each of the lens galaxies
within their respective Einstein radii, the mass of G1 enclosed
within rg.g; = 0/81 is Mg, = 1.9 x 10" h~!' My, and the
mass of G2 enclosed within rg.gy = 0728 is Mg, = 2.8 x 10'°
h~!' Mg . Our dust correction enables us to recover the intrinsic
luminosity of the lens galaxies. We use the fitted Sérsic light
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profiles to estimate the luminosity of G1 and G2. Integrating
the flux of G1 and G2 within rg.g; and rg.gp, respectively,
the fotal mass to rest-frame B-band light ratio of GI is
(M/LB)GI = (20 + 02)]1 M@ LEIQ and of G2 is (M/LB)G2 =
(1.5 £ 0.2)h Mg Lg’lg. The total mass and M/L of GI are
consistent with those from earlier works on B1608+656 (e.g.,
Fassnacht et al. 1996) after taking into account the difference in
the Einstein radius (due to the different number of components
in the lens model) and the lowered M/L as a result of the
dust correction. The M/L ratio of G1 is low compared to
the lens galaxies in Treu & Koopmans (2004), which have
M/L in the range ~ 3-8 My/Lg . This is consistent with
the spectrum of G1 showing signatures of both young and
poststarburst populations, since these types of galaxies can
have lower M/L ratios by a factor of ~ 10 compared to
other E/SO galaxies at similar redshifts (e.g., van Dokkum &
Stanford 2003). Therefore, even though B1608+656 consists
of two interacting galaxy lenses that lie in a group (Fassnacht
et al. 2006), the M/L ratio of G1 is consistent with those in
noninteracting lens systems.

8. CONCLUSIONS

In this paper, we have described and tested an iterative and
perturbative lens potential reconstruction scheme whose accu-
racy in the recovered lens potential is in principle solely limited
by the noise in the data, provided we have extended sources
giving well connected ring-like images. The method is based on
a Bayesian analysis, which provides a quantitative approach for
comparing different models of the various constituents of a lens
system: PSF, dust, lens galaxy light, and lens potential. We ap-
plied this method to the gravitational lens B1608+656 with deep
HST ACS observations. We presented an image processing tech-
nique for obtaining a suite of PSF, dust, and lens galaxies’ light
models, and compared these models quantitatively. For each
model, we reconstructed the lens potential on a grid of pixels,
using the simply-parameterized SPLE1+D (isotropic) model in
Koopmans et al. (2003) as our initial model. The reconstructions
for the models with three-band dust maps were deemed success-
ful in that they led to an acceptable level of image residual and
a well-localized inferred source-intensity distribution.

From our analysis, we draw the following conclusions.

1. The potential reconstruction method, which simultaneously
determines the extended source intensity and the lens
potential distributions on grids of pixels, can correct for
potential perturbations that are < 5%.

2. The mass-sheet degeneracy is broken in the potential cor-
rections by choosing forms of regularization that suppress
large deviations from the initial (mass-constrained) model
unless the data require them.

3. The NICMOS F160W image is needed to complement the
ACS F606W and F814W images for dust correction in order
to avoid systematic errors.

4. The level of potential correction required in B1608+656
was found to be ~ 2%, validating the use of the simply-
parameterized model of Koopmans et al. (2003).

5. The effect of dust extinction does not alter the global
structure of the lens potential, and hence the predicted
Fermat potential differences between the images.

6. The mass and M/Lg of G1 inside rg = 0781 are 1.9 x 10!!

h™' Mg and (2.0 & 0.2)h M, Lg’le, respectively. These
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values are consistent with the spectral type of this galaxy
and previous less accurate estimates of its M/L ratio.

Although the pixelated potential reconstruction method can
be applied to any lens system with an extended source-intensity
distribution, it is particularly useful for measuring Hj in time-
delay lenses. B1608+656 is the only four-image gravitational
lens system that have all three independent relative time de-
lays measured with errors of a few percent (Fassnacht et al.
1999, 2002). However, current and future imaging surveys (such
as the Canada-France-Hawaii Telescope (CFHT) Legacy Sur-
vey, the Panoramic Survey Telescope & Rapid Response Sys-
tem, the Large Synoptic Survey Telescope, and the Joint Dark
Energy Mission) either are or soon will be producing many
more lenses: we can anticipate building up a sample of lens sys-
tems that can be fruitfully studied using the methods we have
developed.
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APPENDIX

THE MATRIX OPERATOR FOR PIXELATED POTENTIAL
CORRECTION

A comparison of the potential correction Equation (3) with
its matrix form in Equation (4) shows that the matrix operator
t needs to include the PSF blurring, the reconstructed source-
intensity gradient, and the gradient operator that acts on the
potential perturbations §¥. We will consider each of these in
the reverse order.
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Figure 11. Typical annular region for potential corrections and the form of
0fi,j/0x1 for each pixel. The blank pixels use the i =2, ..., M — 1 expression
for df; j/dx; in equation (Al). The pixels with “e” are edge pixels that use
the i = 1 ori = M expressions for df; ;/0x1 in Equation (A1). The shaded
pixels use Equation (A2) for df; j/dx1. The hashed pixel is an example of an
“exposed” pixel with no adjacent pixel in the x; direction.

Before discussing the gradient operator, we need to define
the domain over which the gradient operates. Recall that the
potential corrections are obtained on an annular region that
contains the Einstein ring of the lensed source. This region was
obtained by tracing all the potential pixels back to the source
plane (from the lens equation) and seeing which ones land on
the finite source region of reconstruction. Only these potential
pixels that trace back to the finite source region will have
values of the source-intensity gradient for potential correction
via Equation (3). These pixels tend to mark an annular region.
Therefore, we need to find the gradient operator on this annular
region for §1.

To construct the gradient operator, we use finite differencing
to obtain numerical derivatives. For simplicity, first consider a
M x N rectangular grid with x; and x, as axes and (i, j) as
pixel indices (typically M ~ N ~ 30). In this case, the partial
derivatives of a function f; ; defined on the grid are

o, ﬁ(_3fl,j +4f2;— f3.;) ifi =1

ij ] 1 .y

axlj= 3 (fierj = fim1j) ifi=2....,M—1
ﬁ(fM—lj —4fm-1,j+3fu;) ifi=M
A (“3fir+4fia— fi3)  ifj=1

_8f"-i 1 e

o, ) 2% Vit = fii-1) if j=2,...,N—1,
ﬁ(fiw—z —4fina1+3fin) ifj=N

(A1)

where Ax; and Ax; are, respectively, the pixel sizes in the x; and
X, directions. For the annular region of potential corrections,
we only need to elaborate slightly on Equation (A1l). Figure 11
shows a typical annular region and the types of pixels when
numerically differentiating in the x; direction. The edge pixels
of the annulus, which are denoted by “e” in the figure for the x;
direction, are treated as though they are like the edge pixels of
the rectangular grid (so thatthei = 1,i =M, j=1,orj =N
expressions are used) when the edge pixels are adjacent to at
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least two other pixels in the annulus in the direction of which
the numerical derivative is taken. If an edge pixel of the annulus
is only adjacent to one other pixel in the direction of which the
numerical derivative is taken, such as the shaded pixels in the
figure for the x; direction, then we construct the gradient by
taking the difference between the two and dividing by the pixel
size. For example, if f; ; is at the edge, and f;, ; is also in the
annulus (which will have to be an edge pixel if f;, ; is not in
the annulus), then the numerical derivatives in the x; direction
for both f; ; and f, ; are

fij _ firrj = fij
Bxl AX] ’

(A2)

A similar equation applies for the x;, direction. If an edge pixel
in the annulus is “exposed” in the sense that in one of the
directions x; or xp, it has no adjacent pixels in the annulus, then
this pixel is removed from the annular region of reconstruction
as no numerical derivative can be formed. An example of an
“exposed” pixel in the x; direction is the hashed pixel in the
figure. Following the above prescription, we can obtain the
values (3f;, ;j/0xy, df;, j/9x2) of all the (i, j) pixels in the annulus
in terms of values of the function in the annulus f;;. Factoring
out the fi; values, we obtain the gradient operator defined as two
matrices: D; for d/dx; and D, for 9/9x,.

To conform to the data grid (since the image residual and
image covariance matrix is defined on the data grid), we use
bilinear interpolation. We overlay the data grid on the coarser
grid, and for every data pixel that lies inside the annular region
on the coarse grid, we bilinearly interpolate to get, effectively,
gradient operators on the data grid. This gives us an Ng x N,
matrix G where each row (corresponding to a data pixel that lies
within the annulus) has four nonzero values that correspond to
the coefficients of bilinearly interpolating among the four coarse
potential pixels surrounding this data pixel. Associated with
each data pixel are the source-intensity gradient values (d//98;
and 01 /0p,) that were obtained by mapping the data pixel back
to the source plane using the lens equation, and interpolating on
the reconstructed source-intensity gradient on the source grid.
We define matrices G; and G, as the matrix G multiplied by
the source-intensity gradient components 9/ /98, and 01/9p8,,
respectively. By definition, G; and G, are also Nq x N, matrices.

Lastly, we represent the PSF as a blurring matrix (operator)
B that is of dimensions Ngq x Ny (see e.g., Section 4; Treu &
Koopmans 2004). Note that this matrix B is different from the
matrix in Section 2.2.1 that is the Hessian of the Ep.

Combining all the pieces together, the matrix operator t is

t=B-G;-D;+B-G,-Dy, (A3)

which is of dimensions Ng X N.

For the gravitational lens system B1608+656, we also need
to include the effects of dust extinction, which we express as
a diagonal matrix K. Tracing back along the light rays, we
encounter the dust immediately after the PSF blurring (for
the light from the lensed source). Therefore, we include it in
Equation (A3) after B to get the following expression for the
matrix operator t that includes dust:
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