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ABSTRACT
This paper presents a novel work-distribution strategy for
GPUs, that efficiently convolves radio-telescope data onto
a grid, one of the most time-consuming processing steps to
create a sky image. Unlike existing work-distribution strate-
gies, this strategy keeps the number of device-memory ac-
cesses low, without incurring the overhead from sorting or
searching within telescope data. Performance measurements
show that the strategy is an order of magnitude faster than
existing accelerator-based gridders. We compare CUDA and
OpenCL performance for multiple platforms. Also, we re-
port very good multi-GPU scaling properties on a system
with eight GPUs, and show that our prototype implemen-
tation is highly energy efficient. Finally, we describe how a
unique property of GPUs, fast texture interpolation, can be
used as a potential way to improve image quality.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; J.2 [Physical Sciences and Engineering]: Astron-
omy

General Terms
Algorithms, Experimentation, Performance

Keywords
Gridding, sky image, convolutions, GPU

1. INTRODUCTION
During the past decades, astronomers, computer scien-

tists, and engineers have been developing new generations
of radio telescopes that improve on sensitivity, image reso-
lution, and data quality. The data rates of these telescopes
are enormous and increasing with every generation, and so
are the processing requirements. New types of radio tele-
scopes like LOFAR [13], that uses tens of thousands of sim-
ple receivers rather than some tens of large dishes, even rely

c©ACM, 2012. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version is published in the proceedings.
ICS’12, June 25–29, 2012, San Servolo Island, Venice, Italy.
Copyright 2012 ACM 978-1-4503-1316-2/12/06 ...$5.00.

more on digital signal-processing techniques than ever be-
fore. This trend continues with the development of a tele-
scope more powerful than all other telescopes in the world
together — the Square Kilometre Array (SKA) [4].

The imager is a critical component in the data processing
pipeline of a telescope. Basically, the sampled data from
the telescopes is (after considerable preprocessing) added to
a grid, after which the grid is Fourier transformed to create
a sky image. It is also one of the most expensive operations,
in terms of processing requirements. For LOFAR, roughly
half the time of all post-observation processing is spent in
creating sky images. For the SKA Phase 1, the required
amount of image processing power is estimated to be in the
petaflop range [3], and in the exaflop range for the full SKA.

The gridding stage is a good candidate for parallel pro-
cessing on many-core accelerators like GPUs. However, tra-
ditional gridder implementations, designed to run on CPUs,
heavily rely on memory caches and high main-memory band-
width. Accelerators have less bandwidth per FLOP, threat-
ening the efficiency with which this application can be run.
Recently, some other work-distribution strategies for accel-
erators have been published (in this paper, we use the term
algorithm for sequential algorithm, and the term work-distri-
bution strategy or strategy for the way in which an algorithm
is parallelized). Some of these strategies improve on spatial
locality and thus on memory performance, at the cost of
additional computations, by sorting and searching data [9,
5, 6, 11]. None of these efforts achieves more than 14% of
the peak FPU performance; they are typically closer to 4%.
This illustrates that achieving good performance for this al-
gorithm is hard. Moreover, at these efficiencies, one cannot
hope to build the SKA.

This paper presents a new, highly efficient work-distribu-
tion strategy for GPUs, that grids radio-telescope data typi-
cally an order of magnitude faster than other GPU gridders.
Our strategy minimizes device-memory accesses, but does
not rely on sorting or searching data. We implemented the
strategy in CUDA and OpenCL, and compare performance
on several high-end platforms. We show that the strategy
scales well on an eight-GPU system, and that it is highly
energy efficient. We also describe how texture interpolation
hardware in GPUs can possibly contribute to a better image
quality, and show its effect on performance.

This paper is structured as follows. In Section 2, we ex-
plain the basics of imaging radio telescope data. Then, in
Section 3, we elaborate on related work. Section 4 explains
the new strategy. In Section 5, we briefly discuss our proto-
type implementation, and in Section 6, we evaluate the per-
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Figure 1: Three (out of 36) baselines
between nine telescopes.
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Figure 2: Visibilities from con-
secutive times and frequencies
are placed onto the UV-grid.
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Figure 3: UV-grid divided into
subgrids.

formance of the new strategy on multiple platforms, compare
with other accelerator-based gridders, show multi-GPU scal-
ing characteristics, and demonstrate that this form of com-
puting is highly “green.” Section 7 discusses future work and
Section 8 concludes.

2. IMAGING RADIO TELESCOPE DATA
To increase the sensitivity and resolution of images, tele-

scopes often combine data from multiple antennas. Each an-
tenna samples the electromagnetic spectrum at a high rate.
The samples are digitized and converted to complex num-
bers that represent the phase and amplitude of the signal(s)
that come from the observed source(s). The data from mul-
tiple antennas are correlated by multiplying the samples of
each pair of antennas. These products are integrated over
some time interval, to keep the output data rate manage-
able. Figure 1 shows a few telescope pairs, which we call
baselines.

The integrated product of the samples of an antenna pair
is called a visibility. Each visibility has an associated (u,v,w)
coordinate, which depends on the position of the antennas,
on the position of the observed source, on the frequency of
the observed signal, and on the time. The (u,v,w) coordi-
nates for an antenna pair changes over time due to rotation
of the earth, that alters the antenna’s positions with respect
to the observed source. After correlation, the visibilities un-
dergo some processing (removal of interference, calibration,
etc.) to improve data quality.

Since visibilities are sampled in the Fourier domain, they
are placed on a UV -grid. A final two-dimensional FFT then
converts the UV-image to a sky-image. Placement of the
visibilities on the UV-grid is the topic of this paper.

A visibility is placed onto the UV-grid using its u and v
coordinates. However, the visibility does not contribute to
a single grid point, but to neighboring grid points as well.
This contribution is computed by convolving the visibility
with a convolution matrix, i.e., by multiplying the (complex)
visibility with each of the (complex) weights in the matrix,
and by adding the result to the grid. How the contents of a
convolution matrix are obtained, is far beyond the scope of
this paper; for interested readers, we refer to [8]. Here, we
consider the convolution matrix as a precomputed matrix of
complex weights.

Figure 2 shows how visibilities from the three antenna
pairs from Figure 1 are placed onto a UV-grid. Consecutive
visibilities (in time) from one baseline and one frequency are
placed in an elliptic curve over the grid. Visibilities from
higher frequencies and larger baselines follow ellipses with
larger diameters. Telescope configurations and observation
times are typically chosen so that the UV grid is optimally
covered with visibility data, to get the best image quality.

For a particular baseline, the convolution matrix slides
slowly in time and frequency over the grid. This movement
is not too fast, otherwise the visibility would be smeared
over a too large area in the UV-grid, reducing image quality.
The movement is also not too slow, otherwise the visibilities
could have been integrated over a larger time and/or over
more frequencies earlier on in the processing pipeline, re-
ducing the data rate and processing time. The speed of the
movement depends largely on the baseline length and the
grid size, but it generally takes tens of visibilities (in time)
to move one grid point away. After (almost) one day of ob-
serving, the ellipse is completed, but it is perfectly possible
to generate images from shorter observations.

When creating wide-field images, we cannot treat the sphe-
roidal form of the earth and the observed part of the sky as
flat planes. In this case, the w coordinate (in the third
dimension) is non-zero, and we use a technique called wide-
field imaging. Using a single convolution matrix is not suf-
ficient then. The W-projection algorithm [2] uses different
convolution matrices for different values of w. Typically, the
W-dimension is partitioned into several tens of W-planes,
with different convolution matrices for each W-plane.

Additionally, the W-projection algorithm increases preci-
sion in the U and V directions as well. Since the (u,v,w)
coordinates of a visibility are floating-point numbers with
non-zero fractional parts, the convolved visibility cannot be
added exactly at grid points with integer U and V coor-
dinates. To increase accuracy, the W-projection algorithm
uses multiple convolution matrices (typically, 8 × 8 per W-
plane) for different fractional parts of u and v. For example,
there is a convolution matrix for fractional parts (.0,.0), one
for (.0,.125), one for (.375,.625), etc. The convolution matrix
that is the closest one to the fractional parts of u and v is
then used. The W-projection algorithm increases accuracy
by oversampling the convolution function when creating the
8×8 convolution matrices. All convolution weights together



FOR bl IN baselines DO
FOR time IN times DO

FOR chan IN channels DO
(u,v,w) = getUVWcoordinates(bl, time, chan)
overSampU = int(8 ∗ frac(u)) // oversampling: use most appropriate convolution matrix
overSampV = int(8 ∗ frac(v))
FOR convV IN 0 TO convSize DO
FOR convU IN 0 TO convSize DO
weight = convFuncs[int(w)][overSampV][overSampU][convV][convU]
FOR pol IN {XX,XY,YX,YY} DO
grid[int(v) + convV][int(u) + convU][pol] += visibilities[time][bl][chan][pol] ∗ weight

Algorithm 1: Core of the W-projection algorithm.

form a five-dimensional array, indexed by w, the fractional
parts of u and v, and the two coordinates within the convo-
lution matrix.

Typically, telescopes sample the electromagnetic spectrum
in two orthogonal polarizations, X and Y. The correlator
cross-correlates these polarizations, so that visibilities come
in quadruples: XX, XY, YX, and YY. In fact, we create
four images from these visibilities, one for each polarization.
Each group of four visibilities has the same (u,v,w) coordi-
nates and is convolved using the same convolution matrix,
but the results are placed onto different grids.

The W-projection algorithm is summarized in Algorithm 1.
It iterates over baselines, times, and frequency channels,
looks up the (u,v,w) coordinates of the current four visi-
bilities, determines the most appropriate convolution func-
tion, and multiplies the four visibilities with the convolution
matrix, and adds the result to the four grids.

3. RELATED WORK
Convolutions are commonly used to implement generic im-

age operations like blurring and edge detection. Here, each
pixel of an output image is the sum of weighted neighbor-
ing pixels from the input image; the weights are stored in
what is called a “mask” or “filter”. Generic image-processing
convolutions on GPUs (or other many-core hardware) have
been studied extensively (for example, [1, 7]), and are com-
monly used in tutorials on GPU programming (e.g., a sample
implementation is distributed in the AMD OpenCL SDK).

However, gridding radio-telescope data is different from
generic image convolutions, in the sense that we convolve
samples rather than images, that the access patterns are
different and less predictable, and that creating a sky image
is computationally much more expensive. The output is an
image, though (in the Fourier domain). The amount of lit-
erature contributions on accelerated radio-telescope convo-
lutions is much smaller. Below, we elaborate on four studies
that are related to our work.

The GPU gridder that is being developed for the Murchi-
son Widefield Array (MWA) is one of them. Edgar et. al. [5]
describe how visibilities for the MWA are gridded using a
gridder written in CUDA. They recognized that actively
adding a convolved visibility to a subset of the UV grid
is not thread safe on the hardware they use — and if it
were, adding convolved visibilities directly to the grid would
require a prohibitive amount of (atomic) device-memory ac-
cesses. Therefore, their approach is to associate each grid
point with a CUDA thread, and search, for all grid points,
the visibilities that contribute to a grid point. Since there
are, in their case, on average only 60 out of 130,816 visibili-
ties that do contribute something to a grid point, in its basic
form, each thread would waste an enormous amount of time

searching for the visibilities of interest. Hence, they sort the
visibilities according to their (u,v) coordinates and put them
into bins, so that a thread only needs to search nine bins (the
“home” bin, plus eight neighboring bins) for the visibilities
of interest. However, eight of out of nine searched visibilities
will still not contribute to the thread’s grid point, but do add
to the overhead. The work-distribution strategy presented
in this paper, which will be described in the next section,
neither needs sorting of visibilities, nor needs searching for
visibilities, while keeping the amount of accesses to device
memory low.

Varbanescu et. al. [11, 12] implemented the W-projection
algorithm on the Cell BE processor. The Cell BE is a many-
core processor, but its architecture is rather different from
the GPU architectures from AMD and Nvidia. A Cell BE
processor essentially consists of a PowerPC CPU, and is as-
sisted by eight vector coprocessors, called SPUs, that run
their own code. Asynchronous DMA transfers between CPU
and SPU memory are explicitly programmed, and aligned
multiples of 128 bytes must be transferred to achieve high
bandwidth. Also, the SPUs are (four-word) vector proces-
sors that can only load/store efficiently if the words are con-
tiguous and aligned in memory. The nature of Cell BE archi-
tecture led to a work-distribution strategy where the paral-
lelism is rather coarse grained: an SPU DMAs a convolution
matrix and the relevant part of the grid to its local mem-
ory, convolves the visibility and adds it to its partial grid
copy, and DMAs the new grid copy back to main memory.
They implemented many optimizations: standard optimiza-
tions like triple buffering, but also application-dependent
optimizations that try to improve locality, so that fewer
DMAs between host memory and SPU memory are neces-
sary. Their strategy also (partially) sorts visibilities accord-
ing to their (u,v,w) coordinates and searches for visibilities
that contribute to particular grid points. This is done in
a way that the benefits for improved locality outweigh the
computational costs for sorting and searching.

The W-projection algorithm was also ported, optimized,
and benchmarked on GPUs by van Amesfoort et. al. [9].
Apart from the above-mentioned optimizations to improve
locality, they focussed on maximizing the obtained device-
memory bandwidth. To avoid race conditions, caused by
multiple thread blocks updating device memory concurrently,
they gave each thread block a private grid in device mem-
ory. Unfortunately, with the memory sizes of present-day
GPUs, this implementation limits the grid sizes to very low-
resolution images, so this method is not usable for telescopes
like LOFAR and the SKA.

Humphreys and Cornwell describe a GPU gridder that is
optimized to achieve maximum device memory bandwidth [6].
As with the previously mentioned gridder, this gridder also



adds data directly to device memory. Likewise, their gridder
is fully memory-bandwidth bound.

4. THE GPU-OPTIMIZED WORK-DISTRI-
BUTION STRATEGY

We now present a new work-distribution strategy that ef-
ficiently convolves and grids the visibility data on the UV-
grid, without the necessity to sort or search visibilities, while
keeping the number of expensive device-memory accesses
very low. The basic idea is to accumulate data in regis-
ters rather than in device memory. Unfortunately, this can
only be achieved using an unintuitive and complex work-
distribution strategy.

The strategy works as follows. We decompose the grid
into subgrids that have the same size as the convolution
matrix. In the example of Figure 3, we use a 15 × 15 grid,
and a 4 × 4 convolution matrix; in reality, both are much
larger. We also create a number of threads that, for the
time being, equals the number of grid points in a subgrid.
Conceptually, each thread “monitors” a large number of grid
points; one fixed grid point per subgrid. In this example,
we create 16 threads, where one of the threads monitors
all grid points marked X; another thread monitors all grid
points marked O.

The convolution matrix (the gray-shaded area in the fig-
ure) slides slowly over the grid. An important insight is
that each thread always monitors exactly one grid point cov-
ered by the convolution matrix, no more, no less. Consider,
for example, the grid point F8, which is monitored by the
“O” thread. As the convolution matrix slides, say, to the
left, the thread monitors the same grid point until the ma-
trix hits line 4. At this time, the convolution matrix slides
off F8, and the O thread switches to grid point F4.

Since the convolution matrix slides slowly, a thread does
not often switch to another grid point. An important con-
sequence is that it can accumulate multiple updates (addi-
tions) to a grid point locally in registers. Only when the
thread switches to another grid point, it (atomically) adds
its local sum to the grid point value that resides in device
memory. This significantly reduces the number of device
memory accesses; a n × n convolution matrix that slides
one grid point away updates only n out of n2 grid points in
device memory.

Algorithm 2 shows simplified pseudo code for the new al-
gorithm. This kernel is invoked for many threads concur-
rently, where each thread is invoked with different values for
myBL (myBaseLine), myU, and myV, the latter two having
values between zero and convSize - 1. The kernel initializes
four complex accumulators (kept in registers), and iterates
over a series of times and frequencies. It computes its con-
volution function indices and grid coordinates, and checks if
the grid coordinates have changed since the previous time.
Usually, they are still the same, but sometimes, the thread
switches to another grid point an adds its local sums to
the grid — atomically, since threads that process different
baselines might update the same grid point simultaneously.
Then, the thread multiplies the four visibilities with its con-
volution weight, and adds its them to its local sums. It
repeats this, until the visibilities for all times and frequency
channels have been processed. Finally, the local sums are
once added to the grid.

KERNEL convolve(..., myBL, myU, myV) IS
sumXX = sumXY = sumYX = sumYY = (0,0)
prevGridU = prevGridV = 0

FOR time IN times DO
FOR chan IN channels DO
(u,v,w) = getUVWcoordinates(myBL, time, chan)
overSampU = int(8 ∗ frac(u))
overSampV = int(8 ∗ frac(v))
myConvU = (int(u) − myU) % convSize // unsigned mod
myConvV = (int(v) − myV) % convSize
myGridU = int(u) + myConvU
myGridV = int(v) + myConvV

IF prevGridV != myGridV OR prevGridU != myGridV THEN
atomicAdd(grid[prevGridV][prevGridU][XX], sumXX)
atomicAdd(grid[prevGridV][prevGridU][XY], sumXY)
atomicAdd(grid[prevGridV][prevGridU][YX], sumYX)
atomicAdd(grid[prevGridV][prevGridU][YY], sumYY)
prevGridU = myGridU, prevGridV = myGridV
sumXX = sumXY = sumYX = sumYY = (0,0)

END IF

weight = convFuncs[int(w)][overSampV][overSampU]...
...[myConvV][myConvU]

sumXX += visibilities[time][myBL][chan][XX] ∗ weight
sumXY += visibilities[time][myBL][chan][XY] ∗ weight
sumYX += visibilities[time][myBL][chan][YX] ∗ weight
sumYY += visibilities[time][myBL][chan][YY] ∗ weight

END FOR
END FOR

atomicAdd(grid[prevGridV][prevGridU][XX], sumXX)
atomicAdd(grid[prevGridV][prevGridU][XY], sumXY)
atomicAdd(grid[prevGridV][prevGridU][YX], sumYX)
atomicAdd(grid[prevGridV][prevGridU][YY], sumYY)

Algorithm 2: Memory-bandwidth reduced W-pro-
jection.

Algorithm 2 illustrates how the amount of memory ac-
cesses can be reduced, but it can be improved further. Our
GPU implementation prefetches visibilities and UVW coor-
dinates from device memory to fast, shared (local) memory,
and precomputes some array indices. Also, we removed the
expensive modulo operation from the inner loop, and re-
placed it by a conditional add.

For small convolution matrices, there is one thread per
convolution matrix point. For large convolution functions,
we let each thread perform the work for multiple convolution
matrix points, because the maximum number of threads per
thread block is typically in the 256–1024 range.

The grid is conceptually divided into bins that have the
same size as the convolution matrix. The W-projection al-
gorithm allows smaller convolution matrices for short base-
lines, reducing the amount of computations. Our strategy
supports this. The visibilities for different baselines can be
gridded independently of each other, and the conceptual di-
vision of the grid into subgrids can be different for each
baseline.

4.1 Interpolation
Since convolved visibilities must be placed at grid points

with integer coordinates, the W-projection algorithm picks
the most suitable convolution matrix from a large set, de-
pending on the fractional parts of the u and v coordinates,
and on the w coordinate. On GPUs, it seems attractive to
take another approach, since the texture units have special-
purpose hardware to quickly interpolate values in a one,
two, or three-dimensional texture. Instead of using a five-
dimensional array to store all convolution weights, we create
a three-dimensional texture, organized as a stack of (two-



dimensional) convolution functions. Each plane in this stack
describes the convolution function for a particular value of w.
This way, we create a 3D-texture, that describes the convolu-
tion function, for all values of w. By using floating-point in-
dices, the convolution function can be sampled everywhere,
using interpolation. This way, we use the fractional parts of
the (u,v,w) coordinates to place the convolved visibilities at
non-integer grid points. The size of the 3D-texture can be
different from the size of the convolved visibility matrix that
is added to the grid, since the texture indices can be scaled.
A larger texture is more accurate, but causes many misses in
the texture cache, especially if the texture is sparsely sam-
pled.

The pseudo codes in Algorithm 1 and Algorithm 2 are
slightly modified to allow interpolation. Instead of using
overSampU and overSampV to read convFuncs, we call a
function interpolateConvFunc(u,v,w) that linearly interpo-
lates the eight nearest points in the cube with convolution
values, using the floating-point coordinates u, v, and w.

Using a 3D-texture potentially leads to a higher image
quality (e.g., with a higher dynamic range), something that
we did not yet investigate. Additionally, it is likely that
the texture can be significantly smaller than with the classic
W-projection algorithm; we think that fewer W-planes are
needed, and that the oversampling factors in U and V direc-
tions can be much lower than 8 × 8, because interpolation
and oversampling are both techniques that improve accuracy
by taking the fractional parts of the (u,v,w) coordinates into
account.

5. IMPLEMENTATION DETAILS
We first wrote a reference implementation for the clas-

sic W-projection algorithm and the interpolation algorithm
in C++. It follows the ideas from a reference implemen-
tation by Tim Cornwell, but our implementation is highly
optimized: it is multi-threaded and uses AVX vector in-
trinsics. These eight-word vector instructions are used to
efficiently convolve the four complex numbers from the four
polarizations in parallel. This way, we compute four com-
plex multiply-adds with four arithmetic AVX instructions.
Three additional AVX shuffle instructions are necessary to
permute the real and imaginary operands, and one more
AVX move instruction stores the result.

The reference implementation still uses the old idea to add
the convolved visibility directly to the grid in main memory,
and heavily relies on the memory cache to cache the parts of
a grid that are actively being added to. To attain high cache-
hit ratios, it is of importance to reduce the working set size to
something that fits in the L1 cache. This can be achieved by
moving the “convV” loop in Algorithm 1 two levels up. Not
applying this optimization results in a performance penalty
of up to a factor of 18.5. It is important to note that this
optimization cannot be applied to GPUs: the large amount
of active threads write to many more different locations in
main memory than can be cached.

To test our new strategy for the W-projection algorithm
on GPUs, we implemented a prototype gridder in both CUDA
and OpenCL. The CUDA implementation runs on Nvidia
GPUs only. The OpenCL implementation runs on all CPUs
and GPUs that support OpenCL. The code that runs on
the hosts uses the OpenCL C++ bindings with exception
support, which leads to much more concise code than the C
bindings.

The convolution matrices are either stored as texture (in
OpenCL terminology: image), or a normal array. We only
use textures on platforms that support them, and when this
actually improves performance. The classic W-projection
algorithm does not interpolate the texture.

We distribute the work over the threads (work items) and
thread blocks (work groups) as follows. Since the visibili-
ties for different baselines are typically placed on different
parts of the grid, we create one thread block per baseline,
which are independently processed by the multiprocessors of
the GPU. The threads within the thread block then process
the visibilities of a number of frequency channels, timesteps,
and all polarizations, for a single baseline. This way, we
maximize register reuse due to locality on the grid. The
kernels transfer visibility and UVW data from mapped host
memory through the PCIe bus. Since this data is reused
by multiple threads, each kernel first stores the data in
shared (local) memory, synchronizes all threads (within the
multi-processor), and then performs the convolution compu-
tations, This way, the threads have quick access to visibility
and UVW data.

6. PERFORMANCE RESULTS
We measured the performance of our new strategy on

the following combinations of hardware, programming lan-
guages, and platform vendors:

hardware platform & peak peak power
language GFLOPS GB/s Watt

Nvidia GTX 680 Nvidia CUDA 3090 192 195
Nvidia GTX 680 Nvidia OpenCL 3090 192 195
AMD HD 7970 AMD OpenCL 3789 264 230
2× Intel E5-2680 AMD OpenCL 343 102 260
2× Intel E5-2680 Intel OpenCL 343 102 260
2× Intel E5-2680 Intel C++ 343 102 260

These are the latest high-end CPUs and GPUs available,
manufactured using comparable technologies (28–32 nm).

We used real (u,v,w) coordinates from a six-hour LOFAR
observation with 44 antennas (946 baselines; 10 s. integra-
tion time, and one subband of 16 frequency channels). A
full observation consists of hundreds of subbands, thus the
amount of time to grid an entire observation would be sev-
eral hundreds of times higher than the execution times men-
tioned below.

6.1 Performance measurements of the W-pro-
jection algorithm

We first measured the performance of our strategy for the
W-projection algorithm. On the X-axes of Figures 4, 5, and
7, we vary the convolution matrix size. Although the imple-
mentation supports baseline-dependent convolution matrix
sizes, we use fixed sizes for all performance measurements, to
better understand the performance results. All performance
measurements were done using a quad polarized, 2048×2048
grid. We use a fixed 8×8 oversampling rate and 32 W-planes,
because the execution times hardly depend on these param-
eters, while these parameters are supported by all platforms.

Figure 4 shows the performance of our prototype imple-
mentations. The left graph shows the gridding execution
times for one subband of the six-hour observation. The rea-
sons for the large differences in execution times for the dif-
ferent platforms will be explained in the remainder of this
section. The slopes in the curves are due to the (quadrati-
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Figure 4: Performance of our new strategy for the W-projection algorithm.

cally) increased amount of work that is involved with larger
convolution matrix sizes.

The middle graph of Figure 4 demonstrates the efficiency
of our new work-distribution strategy. We express the ef-
ficiency in terms of Giga Grid-Point Additions Per Second
(GGPAPS). Note that GGPAPS counts the number of up-
dates in registers, not the number of updates to grid points
in device memory. The number of “useful”GFLOPS per sec-
ond is eight times the number of GGPAPS, since a complex
multiply-add costs four real multiplications and four real ad-
ditions (and maps well to fused multiply-add instructions).

6.1.1 The Nvidia GeForce GTX 680
We will first look at the performance of the CUDA version

on a GTX 680. This is the only version for which the use of
textures reduced the execution times; the benefits from the
additional texture cache outweigh the overhead from extra
instructions to do a texture lookup. Thus for this analysis,
we enabled textures. We used the Nvidia visual profiler to
study the behavior of our application.

For medium and large-size convolution matrices, it up-
dates up to 93.6 billion grid points per second. This equals to
749 GFLOPS (24.2% of the theoretical peak performance),
excluding all kinds of overhead. These overheads are sub-
stantial: for 256×256 convolutions, only 37% of all executed
instructions are FPU instructions (fused multiply-adds) that
operate on the visibility data. Most instructions (41%) are
integer instructions used as loop variable or array index, the
remainder are shared memory loads (7%), texture lookups
(4.7%), comparisons that set predicates (4.7%), branch in-
structions (4.7%) and a few miscellaneous instructions. Only
0.094% of the executed instructions are atomic memory ad-
ditions.

The new strategy successfully reduces the amount of de-
vice memory accesses: only 0.23% of all grid point updates
need access to device memory. The measured device memory
bandwidth is 53.0 GB/s (out of a maximum of 192 GB/s), of
which 19.8 GB/s is due to grid point updates and 33.2 GB/s
due to texture cache misses. The operational intensity (i.e.,
the amount of arithmetic operations per byte transferred
to/from device memory) is 14.1 FLOPS/byte, which is on
par with the peak GFLOPS/peak bandwidth (16.1 FLOPS/
byte). The costs of transferring visibilities and UVW coordi-

nates from host memory through the PCIe bus to the GPU
card are negligible, due to good overlap between computa-
tions and communication. A 87.2% texture hit rate is suffi-
cient. The achieved occupancy is high (0.952): each multi-
processor runs two blocks of 1024 threads concurrently, using
the full register file and nearly all shared memory.

Unfortunately, the profiler does not point us at the real
bottleneck: the application seems neither compute bound,
nor memory bound, or limited by PCIe bandwidth. The
real culprit is the atomicity of the global memory additions,
and the atomic aspect of this update is not covered by the
profiler. Even though only 0.23% of all grid point updates
result in an atomic memory update, the costs of these occa-
sional updates are high: the atomic nature of these additions
is responsible for 26% of the total run time. To remove the
atomic nature of these updates, we could use a private grid
per active block of compute threads if the device memory
were somewhat larger (3–7 GB, depending on the convolu-
tion function size, assuming a 2048×2048 grid), but current
GTX 680s are limited to 2 GB in size.

For the smallest convolution matrix sizes, the performance
is also good, almost as good as for medium and large con-
volution matrices. This configuration requires quite differ-
ent tuning parameters, though. With 16 × 16 matrices,
each block has 256 threads, and we run 6 blocks per multi-
processor concurrently, yielding a measured occupancy of
0.694 (the theoretical maximum occupancy is 0.75). Increas-
ing the number of concurrent blocks to 8 per multi-processor
(for a theoretical occupancy of 1.00) did not improve per-
formance anymore.

On the same GTX 680, the OpenCL implementation is
clearly slower than the CUDA implementation. One reason
for this is the fact that an atomic floating-point addition to
device memory is natively supported in CUDA, and has to
be implemented using an atomic compare-and-swap primi-
tive in OpenCL, which must be repeated until it succeeds.
With CUDA, an atomic floating-point addition is translated
into a single, predicated, atomic add instruction in the bi-
nary executable of the GTX 680, while the binary executable
of the OpenCL implementation requires seven instructions,
including an even more expensive compare-and-swap. The
performance impact is large: up to 55% of the performance



difference between CUDA and OpenCL is caused by the ab-
sence of an atomic floating-point add in OpenCL. Unfor-
tunately, even the new OpenCL 1.2 specification does not
mention this as an extension. The remainder of the per-
formance difference is explained by the fact that for these
measurements, we did not use images (textures), as doing so
increases the total runtime. The CUDA version uses 1D tex-
tures, but the current OpenCL 1.1 specification only sup-
ports 2D and 3D images. The benefits of using the texture
cache does not outweigh the additional overhead of indexing
a multi-dimensional image. OpenCL 1.2 will allow 1D im-
ages.

6.1.2 The AMD Radeon HD 7970
We will now discuss the results from the AMD HD 7970

GPU. In most cases, it is the fastest GPU, with a maxi-
mum performance of 117.4 GGPAPS. This is not surpris-
ing, since the HD 7970 has a 23% higher FPU peak perfor-
mance, 37% more memory bandwidth, and an 18% higher
maximum power consumption than GTX 680. However, for
small convolution functions, the HD 7970 performs worse
than the GTX 680. One reason for this is that the AMD
OpenCL runtime does not (yet) overlap I/O and computa-
tions, even though we submit alternating I/O and compute
commands to multiple queues (by multiple host threads).
We saw this non-overlapping behavior in other applications
as well. In contrast, the Nvidia runtime optimally overlaps
I/O and computations on the GTX 680. If communication
would have fully overlapped on the HD 7970, it would have
achieved 79.3 GGPAPS, slightly more than the GTX 680.
Fortunately, we found that the run time on the HD 7970
could be improved by mapping host memory into the GPU
address space, letting the GPU cores read host memory. The
other way around, mapping device memory into the host
address space (an AMD extension), did not work for any-
thing but impractically small buffers. The graph in Figure 4
shows the best obtained performance, hence for the version
that maps host memory into the GPU address space.

A second cause for the lower performance of the HD 7970
on small convolution functions is the larger impact of the
absence of support for native atomic floating-point addi-
tions. On this device, it is hard to estimate the perfor-
mance if it would have supported atomic additions, but we
see that the impact is high if we replace the atomic compare-
and-swaps by non-atomic additions (yielding wrong results).
The performance then increases from 67.8 to 84.9 GGPAPS
for 16 × 16 convolutions. If I/O would also overlap with
computations, the performance would further increase, up
to 119.8 GGPAPS. Still, the new Graphic Core Next ar-
chitecture used by the HD 7970 is a major leap forward
over AMD’s previous architecture: the HD 7970 runs our
application between 5.0 and 5.6 times as fast as the older
HD 6970. The gap between Nvidia’s current Kepler architec-
ture and its previous Fermi architecture is much narrower;
the GTX 680 is 1.18–1.66 times as fast as the GTX 580,
though it also reduces power consumption by ∼25%.

6.1.3 The dual Intel Xeon E5-2680
On a dual Xeon E5-2680 CPU, our C++/AVX imple-

mentation runs highly efficiently. The performance varies
between 20.8 and 33.9 GGPAPS. This corresponds to 48–
79% of the FPU peak performance. The hand-written AVX
intrinsics improved performance by a factor 2.3–3.4 times,

compared to compiler-vectorized code from the intel com-
piler. Thus, for CPUs, the old idea of adding convolved
visibilities directly to the grid is not a bad idea, provided
that the application uses hand-written AVX intrinsics and
is optimized to restrict the working set size to something
that fits in the L1 cache. Again, the latter cannot be done
on a GPU, because there are too many threads in flight for
the amount of cache that is available.

On a CPU, the OpenCL version is slower than the C++/
AVX implementation. The AMD OpenCL compiler gener-
ates 4-word vector operations from the gridding kernel, as it
does not see how it could generate 8-word vector operations.
Without using 8-word vector operations, there is no way to
keep up with the hand-written C++/AVX implementation.
It does, however, accumulate grid updates in vector regis-
ters. A small penalty is paid for the use of atomic compare-
and-swap instructions, but the penalty is at most 6%, lower
than on the GPUs.

Intel’s OpenCL runtime system performs similar to the
OpenCL runtime from AMD, but only after turning off auto-
vectorization: the auto-vectorizer creates code that aggres-
sively spills vector registers to the stack, roughly doubling
instead of reducing the execution times. Without auto-
vectorization, the compiler does not attempt to collapse op-
erations from multiple work items into a single vector in-
struction, but the compiler still can emit vector instructions,
e.g., from float4 operations in a single work item. With auto-
vectorization turned off, the performance is on par with the
AMD OpenCL runtime, which is not surprising, because the
generated code is highly similar.

6.1.4 CPUs vs. GPUs
Figure 4 (right) shows speedups with respect to the C++/

AVX implementation on a dual Xeon E5-2680 CPU. The
GPUs are 2.7–3.6 times faster than a pair of almost the
fastest general-purpose CPUs currently available. The dif-
ferent architectures require different approaches. To obtain
good performance on CPUs, one can rely on vector instruc-
tions and efficient caches. To obtain good performance on
GPUs, one must reduce memory bandwidth consumption.

6.2 Comparison with other accelerator-based
gridders
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Figure 5: Comparison with other accelerator-based
gridders.



0 2 4 6 8
nr. GPUs

0

200

400

600

G
ig

a 
G

rid
-P

oi
nt

 A
dd

iti
on

s 
P

er
 S

ec
on

d 256x256

64x64

16x16

0 2 4 6 8
nr. GPUs

0.0

0.5

1.0

1.5

2.0

2.5

po
w

er
 c

on
su

m
pt

io
n 

(k
W

)

256x256

64x64

16x16

0 2 4 6 8
nr. GPUs

0.0

0.5

1.0

1.5

2.0

po
w

er
 e

ffi
ci

en
cy

 (
G

F
LO

P
S

/W
)

256x256

64x64

16x16

Figure 6: Multi-GPU scaling performance (left), power consumption (middle), and power efficiency (right)
for W-projection gridding of different convolution matrix sizes, up to eight GTX 580 GPUs.

Below, we compare our results to those from all other
accelerator-based gridders that we are aware of. Figure 5
graphically shows the performance of published results, mul-
tiplied with the estimated difference in hardware perfor-
mance between the GTX 680 that we used and the hardware
that the others used.1

The MWA gridder achieves 2.3 GGPAPS (130,186 base-
lines, 12 channels, a 24 × 24 convolution matrix, four po-
larizations in 1.57 seconds), using a Tesla C1060 GPU [5].
For the same size convolution matrix, our strategy runs 37.5
times faster (86.3 GGPAPS) on hardware that has 1.9 times
the memory bandwidth. It must be noted, however, that
the Tesla C1060 does not support atomic floating-point ad-
ditions to device memory; to run our strategy on a Tesla
C1060, a slower atomic compare-and-swap instruction must
be used. On the other hand, their imager neither uses mul-
tiple W-planes, nor does it do oversampling, and this sim-
plifies convolution matrix index calculations and allows the
convolution matrix to fit entirely in the texture cache. Un-
der these conditions (thus using atomic compare-and-swaps,
a single convolution matrix, and no oversampling), our grid-
der still achieves 70.0 GGPAPS on a GTX 680.

The performance of the W-projection algorithm was also
studied on a dual Cell BE by Varbanescu et. al. [11, 12].
They achieve 0.50–7.2 GGPAPS on hardware that has a
quarter of the memory bandwidth. Unlike our work-distribu-
tion scheme, they sort visibilities to improve locality and
search for visibilities contributing to a grid point. Obtain-
ing good performance on the Cell BE is hard, because the
SPUs cannot add values directly to main memory, but have
to cache active parts of the grid in their local stores. Even
though this architecture is extremely efficient in computing
correlations [10], we think it is less suitable for gridding.
Also, cache consistency has to be maintained in software by
means of explicit DMAs, which places a notorious burden
on the programmer.

1As the application is memory-I/O bound, we estimate the
difference in hardware speed by dividing the peak memory
bandwidth of the GTX 680 by the peak memory bandwidths
of the devices used by others, plus a 50% safety margin in
the advantage of the others, to make sure that we do not
underestimate their performance.

Van Amesfoort et. al. [9] achieve 1.5–4.6 GGPAPS on a
GTX 280, depending on the convolution matrix size. Cor-
rected for the difference in hardware speeds, our work-distri-
bution strategy is more than an order of magnitude faster.
Also, our strategy allows grids that are at least 10×10 larger
in size.

The gridder by Humphreys and Cornwell [6] is very much
optimized to achieve maximum device memory bandwidth.
However, since the number of device memory accesses is
not reduced, their implementation peaks at 3.6 GGPAPS on
hardware that has 1.67 times less bandwidth (a Tesla C2070
with ECC enabled). Again, the performance difference on
comparable hardware is at least a factor of 12.5.

Although the other works were valuable early research
contributions on accelerator-based gridding, our new strat-
egy is convincingly faster than any other accelerated gridder.
The difference is typically an order of magnitude.

6.3 Multi-GPU scaling and energy efficiency
We also studied the scaling behavior of this strategy for

multiple GPUs in a single system, and determined the power
efficiency. As we had only one GTX 680 (this architecture
has just been released at the time of writing), we used a
Tyan B7015 system with eight GTX 580 GPUs. Compared
to the GTX 680, the GTX 580 has roughly half the com-
putational power, the same memory bandwidth, and a 26%
higher thermal design power. In practice, on the GTX 580
our application runs 40% slower for small convolution func-
tions and 15–20% slower for large and medium sized convo-
lution functions than on a GTX 680.

For these measurements, we used the CUDA implemen-
tation of the W-projection algorithm. We divided the work
over the GPUs by partitioning the data set in time. This
distribution is trivially parallel, thus these chunks are pro-
cessed independently. Only at the very end of a run, the pri-
vate GPU grids are transferred to host memory and added
together.

On the B7015 system, the connections between CPU cores,
host memories, I/O hubs, and GPUs involve multiple PCIe
x16 V2.0 busses, PCIe switches, and Quick-Path Interface
(QPI) links, which are non-uniform. To minimize contention,
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Figure 7: Performance of the interpolation algorithm on a GTX 680 GPU.

our prototype application allocates host memory on the CPU
that is physically closest to the GPU.

With eight GPUs, the application runs no less than 131,072
threads concurrently in a single system! Figure 6 (left) shows
the achieved amounts of GGPAPS for convolution matrices
of different sizes, for up to eight GPUs. Except for very small
convolution matrices, the speedups are perfect. Scaling for
small matrices is still good, but with multiple GPUs and
shared busses, there is some contention on the PCIe busses
when the GPUs fetch visibilities and UVW coordinates from
host memory.

A metered power-distribution unit accurately monitors
the instantaneous voltage, current, and power factor of the
whole system (including the power supply units). For runs
with fewer than eight GPUs, we correct for the idle cur-
rent of unused GPUs, but the power consumption of the
rest of the system is included. Figure 6 (middle) shows that
the system draws no less than 2.6 kW under heavy load.
Still, the algorithm is highly energy-efficient on this plat-
form, as the achieved amount of useful GFLOPS/Watt is
as high as 1.94 (515 pJ/FLOP). For comparison: the C++
implementation on a dual E5-2680 CPU achieves at most
792 MFLOPS/Watt (1.26 nJ/FLOP), while the GTX 580 is
from a 1.5 year older generation. We estimate the power ef-
ficiency of eight current-generation GTX 680s to be around
2.8 GFLOPS/Watt (360 pJ/FLOP). The middle graph also
shows that convolving visibilities with a very small (16×16)
matrix, where the amount of GFLOPS is lower than when
convolving with large matrices, results in lower energy con-
sumption. The power efficiency (right figure) is high, but
not as high as for medium and large matrices.

6.4 Performance measurements for the inter-
polation algorithm

We finally measured the performance of the advanced
gridder, that interpolates the convolution function weights
that are stored in a 3D-texture. We only implemented the
interpolation algorithm in CUDA, but there is no reason
why it could not be implemented in OpenCL. OpenCL sup-
ports the use of hardware interpolation, but it would suffer
from the absence of atomic floating-point additions to device
memory. Figure 7 shows performance metrics on a GTX 680,
for different texture sizes. For these measurements, we as-
sume that the convolution function is symmetric in the U

and V directions, reducing the texture size by a factor of
four.

The performance depends very much on the ratio between
the sizes of the convolution matrix and the texture. When
the convolution matrix is much smaller than the texture, the
execution times rapidly increase. In that case, the texture
is sparsely indexed, and the texture cache is less effective,
because words read from the texture are not reused to com-
pute the values of surrounding convolution matrix weights.
However, if the convolution matrix size approaches the tex-
ture size, the convolution matrix weights are interpolated
from texture entries that are at least partially cached in the
texture cache. In that case, the performance is much closer
to the performance of the standard W-projection algorithm.

The speedup with respect to the CPU version also depends
much on the texture size and on the convolution matrix
size, but is in some cases much higher than that of the W-
projection algorithm. The performance of the CPU version
depends less on the texture size than the GPU versions, but
is, in fact, always poor, compared to the W-projection algo-
rithm. With interpolation, the application is 5.4–6.5 times
slower than our reference W-projection implementation that
does not interpolate. This is not surprising, because the
CPU has no dedicated interpolation hardware. The grids
that are computed by the GPU version differ slightly from
those of the CPU version, due to the limited interpolation
accuracy of the GPU. The total powers on the grids, how-
ever, are equal in both versions.

The size of the texture has impact on the quality of the
eventual image (see Section 7). Since we did not yet deter-
mine the impact, we do not know how small the texture can
be made without losing too much accuracy.

7. FUTURE WORK
A future goal is to develop a GPU imager for the LOFAR

radio telescope [13], and later, for the SKA. The ideas in this
paper will be useful to achieve good performance. However,
low-frequency telescopes like LOFAR need an even more ad-
vanced imaging algorithm (AW-projection), that corrects for
direction-dependent effects as well. Essentially, this means
that the convolution functions become time dependent and
have to be recomputed for every five minutes of telescope
data. Additionally, the convolution functions will be differ-
ent for different polarizations.



An open issue is how interpolation of convolution weights
in a 3D-texture affects astronomical data quality. As long
as the texture contains at least as many entries as the num-
ber of oversampled convolution weights of the original W-
projection algorithm, interpolation will likely give better re-
sults. Unfortunately, as we saw in the previous section, the
run times increased by a factor of 6 when a texture is used
that is much larger than the convolution matrix size. How-
ever, we expect that it is possible to use smaller textures.
At least, the interpolation hardware of GPUs allows think-
ing about interpolation; on CPUs, this is prohibitively slow.

8. CONCLUSIONS
We presented a new work-distribution strategy for GPUs,

that efficiently convolves radio-telescope data on a grid, a
computationally expensive step in the pipeline that creates
sky images from radio-telescope data. This strategy signif-
icantly reduces the number of device-memory accesses, by
accumulating data as long as possible in registers. Unlike
previous work-distribution strategies, this strategy neither
relies on sorting input data, nor does it search for input
data that contributes to some grid point, thus keeping the
overhead low.

Performance measurements on various platforms show that
the strategy is an order of magnitude faster than other pro-
posed solutions for GPUs, corrected for differences in hard-
ware speed. This order of magnitude improvement is what
is necessary to be able to build the Square Kilometre Ar-
ray. We compared CUDA and OpenCL implementations,
and found that the OpenCL implementation suffers from the
absence of an atomic floating-point addition to global mem-
ory. We also compared different architectures, and show
that AMD’s new Graphics Core Next architecture is highly
competitive with Nvidia’s Kepler architecture. Multi-GPU
scaling on a system with eight GPUs is good for small-sized
convolution matrices and excellent for large ones. The strat-
egy is“green”, we achieve almost 2 GFLOP/W (on previous-
generation hardware).

Additionally, we showed how the hardware support for
interpolations in three-dimensional textures can potentially
improve the quality of the generated sky images. However,
we also showed that the computational costs can be high,
depending on size of the convolution matrix and the size of
the texture that stores the convolution functions. Future
research must make clear if interpolation or the traditional
W-projection algorithm provides a better balance between
computational costs and image quality.
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