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ABSTRACT

LOFAR is the first of a new generation of radio telescopes. Rather
than using expensive dishes, it forms a distributed sensor network
that combines the signals from many thousands of simple antennas.
Its revolutionary design allows observations in a frequency range
that has hardly been studied before.

This paper focuses on another novel feature: where traditional
telescopes use customized hardware, we process the data in soft-
ware. This dramatically increases flexibility and substantially re-
duces costs, but the high processing and bandwidth requirements
compel the use of a supercomputer. The antenna signals are cen-
trally combined, filtered, optionally beam-formed, and correlated
by an IBM Blue Gene/P.

To meet the real-time requirements, the application is highly op-
timized, and reaches exceptionally high computational and I/O ef-
ficiencies. This allows us to use only half the planned amount of
resources, and process 50% more telescope data, significantly im-
proving the effectiveness of the entire telescope.

1. INTRODUCTION

Figure 1: A field with low-band antennas (dipoles).
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LOFAR is an acronym for LOw Frequency ARray, an aperture
array radio telescope operating in the 10 to 250 MHz frequency
range. It is the first of a new generation of radio telescopes, that
breaks with the concepts of traditional telescopes in several ways.
Rather than using large, expensive dishes, LOFAR uses many thou-
sands of simple antennas that have no movable parts [1, 15], see
Figure 1. Essentially, it is a distributed sensor network that mon-
itors the sky and combines all signals centrally. This concept re-
quires much more signal processing, but the additional costs of sil-
icon are easily offset by cost savings in steel that would be needed
for dishes. Moreover, LOFAR can observe the sky in many direc-
tions concurrently and switch directions instantaneously. In several
ways, LOFAR will be the largest telescope of the world, and will
enable groundbreaking research in several areas of astronomy and
particle physics [2]. The different goals and observation types re-
quire several different processing pipelines, however.

Another novelty is the elaborate use of software to process the
telescope data in real time. Previous generations of telescopes de-
pended on custom-made hardware because of the high data rates
and processing requirements. However, the desire for a flexible
and reconfigurable instrument with different processing pipelines
for different observation types demands a software solution. The
availability of sufficiently powerful supercomputers allows this.

The most common mode of operation for LOFAR is the standard
imaging pipeline, which is used to generate sky images. This mode
filters and correlates the data sent by the stations. This paper de-
scribes the implementation and performance characteristics of the
real-time part of this pipeline. We present a highly-optimized im-
plementation that achieves very high computational performance:
the correlator sustains 96% of the theoretical floating-point peak
performance during the computational phase. Several pulsar pipe-
lines are being developed as well, that either search large sky re-
gions to find unknown pulsars or, once found, sensitively observe
their characteristics. The pipelines share common components,
shortening their development time. The software also supports
multiple concurrent observations, even of different types.

The receivers produce hundreds of gigabits of data per second.
To handle the high data rate, we use the Blue Gene/P (BG/P) in an
unconventional way: we run application software on the so-called
I/O nodes to pre-process and post-process data that are further han-
dled on the compute nodes. This yields an efficient system and
substantially saved us on costs [5]. Additionally, we developed a
low-overhead network protocol [12] for communication between
I/O nodes and compute nodes, since we were not able to achieve
the required internal input and output data rates with the standard
network system software.
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Figure 2: A simplified overview of the LOFAR processing.

The remainder of this paper is structured as follows. In Sec-
tion 2, we give an overview of the LOFAR telescope. Then, in Sec-
tion 3, we describe the hardware characteristics of the BG/P. Next,
we explain how we process the telescope data on the BG/P, (Sec-
tion 4), focusing on the processing on the I/O nodes (Section 5) and
compute nodes (Section 6). Section 7 extensively discusses perfor-
mance results. In Section 8, we briefly illustrate the astronomical
results of the correlator output. We mention related work in Sec-
tion 9. Finally, we discuss, conclude, and describe future work in
Section 10.

2. THE LOFAR TELESCOPE

LOFAR is driven by the astronomical community, that needs a
new instrument to study an extensive amount of new science cases.
Five key science projects have been defined. First, we expect to see
the Epoch of Reionization (EoR), the time that the first star galaxies
and quasars were formed. The 1.42 GHz emission line of hydrogen
is expected to be red-shifted into the LOFAR sensitivity range. Sec-
ond, LOFAR offers a unique possibility in particle astrophysics for
studying the origin of high-energy (10"°-10?°3 eV) cosmic rays.
Neither the source, nor the physical process that accelerates such
particles is known. Third, LOFAR’s ability to continuously monitor
a large fraction of the sky makes it uniquely suited to find new pul-
sars and to study transient sources. Since LOFAR has no moving
parts, it can instantaneously switch focus to some galactic event.
Fourth, Deep Extragalactic Surveys will be carried out to find the
most distant radio galaxies and study star-forming galaxies. Fifth,
LOFAR will be capable of observing the so far unexplored radio
waves emitted by cosmic magnetic fields. For a more extensive de-
scription of the astronomical aspects of the LOFAR system, see De
Bruyn et. al. [2].

A global overview of the LOFAR instrument is given in Figure 2.
LOFAR uses two different types of antennas: the Low-Band An-
tennas (LBA) for the 10-80 MHz frequency range and High-Band
Antennas (HBA) for the 110-250 MHz band. FM radio transmis-
sions make the in-between range unsuitable for observations. Fig-
ure 1 shows a field with LBAs. Each LBA consists of one dipole
per polarization, while each HBA is organized as a tile, wherein 16
antenna elements are combined. All antennas are dual polarized.

LOFAR’s antennas are structured in a hierarchical way to limit
the costs of data transport and processing. Tens of thousands of an-
tennas are necessary to obtain sufficient sensitivity. The antennas
are distributed over a large area to achieve a high angular resolu-
tion. However, combining the data of all individual antennas cen-
trally would require too much network bandwidth and would result

Figure 3: Possible LOFAR layout.

in excessive computational requirements. Therefore, multiple an-
tennas are grouped to form a station. The signals of the receivers
are combined locally, within the station, using FPGAs.

Geographically, LOFAR consists of a compact core area and a
number of remote stations (See Figure 3). The heart of LOFAR will
be installed in the Northern part of the Netherlands. The stations
are roughly distributed along five log-spiral arms with a diameter of
hundreds of kilometers. The station fields are centrally condensed,
following a logarithmic distribution. About 50% of the stations are
located in the 2 km-wide central core. Additionally, eight to fifteen
European stations will or have been built, extending the maximum
distance to roughly 1000 km. The longer baselines (distance be-
tween two stations) allows observations with high angular resolu-
tion, but limits the Field-of-View; therefore the European stations
will not be used for all observations. In the past several years we
have deployed a number of prototype antennas, while the roll-out
of the final stations is currently in progress.

Each station is equipped with 48-96 LBAs and 48-96 HBA tiles.
A station also features a cabinet where initial processing is done,
using FPGA technology. Typical operations that are performed
here include analog-to-digital conversion, filtering, frequency se-
lection, and combination of the signals from the different receivers.
One of the distinctive properties of LOFAR is that the receivers are
omni-directional, and that multiple, concurrent observation direc-
tions are supported. Since observing the sky in all frequencies and
all directions at the same time would result in an unmanageable
output data rate, the observer selects a limited number of directions
and frequencies, called subbands.

The station data are transported to the central processing location
in Groningen via a Wide-Area Network (WAN), using owned and
leased light paths. We use UDP for data transport, since we can
easily tolerate some data loss. We do not use a reliable protocol
such as TCP, because this significantly complicates the program-
ming of the FPGAs, due to buffering, flow control, retransmission,
and real-time issues.

The UDP packets contain samples, where a sample is a complex
number that represents the amplitude and phase of a signal at a
particular time. A sample is encoded by a 2 x 4, 2 X §, or 2 X
16-bit complex integer. Data can be invalid for various reasons,
such as lost network packets or Radio Frequency Interference (RFI,
e.g., caused by TV transmitters). Throughout the entire processing
chain, we maintain which data is marked as invalid, so that eventual
images are not distorted by bad data.

This paper focuses on the real-time, central processing of LO-
FAR data on an IBM Blue Gene/P supercomputer, and in particular
on the standard-imaging mode. We filter the data, and split the



subbands in narrower frequency bands called channels, which al-
low for more accurate RFI removal. In addition, we perform phase
shift and bandpass corrections. Finally, the signals from all stations
are optionally beam-formed, correlated and forwarded to a storage
cluster, where results can be kept for several days.

After an observation has finished, further processing is done off-
line, on commodity cluster hardware. First, the flagger uses an
RFI detection algorithm to remove bad data. Then, the results are
calibrated for instrumental and environmental effects and for sky
source parameters (e.g., position, flux) [9]. An imaging algorithm
creates an image of the observed source(s). Despite considerable
computational challenges, the scope of this paper does not cover
the off-line processing.

A prototype of a set of other observation modes, used to find and
observe pulsars, is functional, but is not optimized for performance
yet. Hence, we do not discuss the pulsar modes in this paper. How-
ever, the presence of multiple observation modes demonstrates the
flexibility of a software solution. More observation modes will be
implemented in the future.

3. THE BLUE GENE/P

Initially, LOFAR used a 6-rack IBM Blue Gene/L supercomputer
for real-time processing of the station data. We recently replaced
the system by an equally powerful 2.5-rack Blue Gene/P. Below,
we describe the key features of the Blue Gene/P. More information
can be found elsewhere [14].

Our system contains 10,880 processor cores that provide 37.0
TFLOPS peak processing power (including I/O nodes). The sys-
tem is built using SoC (System-on-a-Chip) technology that inte-
grates all processing and networking functionality on a single die.
One chip contains four PowerPC 450 cores, running at a modest
850 MHz clock speed to reduce power consumption and increase
package density. Each core has two Floating-Point Units (FPU)
that provide support for operations on complex numbers. A core
can sustain two fused multiply-adds per cycle. The four cores share
2 GiB of main memory. Although a node can run in SMP mode, we
run the application in virtual node mode, where the processor and
memory of a node are split into four independent, virtual machines.
This simplifies programming, since this allows single-threaded pro-
cessing on the compute cores. The compute nodes run a fast, sim-
ple, single-process kernel (Compute Node Kernel, CNK),

The BG/P contains several networks. A fast 3-dimensional torus
connects all compute nodes and is used for point-to-point and all-
to-all communications. Unlike the BG/L, the torus uses DMA to
offload the CPUs and allows asynchronous communication. The
collective network is used for MPI collective operations, but also
for external communication. A global interrupt network provides
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Figure 4: A pset.

support for fast barriers. Additional networks exist for initializa-
tion, diagnostics, and debugging.

Each compute node is connected to an I/O node via the collec-
tive network (see Figure 4). An I/O node uses the same hardware
as a compute node, but has its 10 Gb/s Ethernet interface connected
and runs another operating system (a modified Linux kernel). Since
our application demands high bandwidths, our system is configured
with the maximum number of 1 I/O node per 16 compute nodes
(64 cores). The group of one I/O node and the compute nodes that
are connected to it, is called a pset. Our system has 160 psets in
total, 64 per rack. Normally, the I/O node is used as a black box
that provides transparent communication from the compute nodes
to external systems: all I/O-related system calls on the compute
nodes are forwarded to a daemon that runs on the I/O node and per-
forms the real operation. In Section 5, we show that it is much more
efficient to run part of the application software on the I/O node.

4. LOFAR PROCESSING

BG/P /O node

Input section
StorageProc ](——[ output section

storage cluster node

BG/P compute cores

from station —>

IONProc

Figure 5: Simplified data flow diagram for the central process-
ing pipeline.

The LOFAR station data are centrally processed in real time by
a collection of three distributed applications. These applications
run on different platforms: the Blue Gene/P I/O nodes, the Blue
Gene/P compute nodes, and on external (PC-like) storage nodes.
Figure 5 shows how the data flows through the entire processing
chain. The first application, /JONProc, runs on the Blue Gene/P 1/O
nodes. Its main tasks are to receive the station UDP data, to buffer
the data for up to 2.5 seconds, and to forward it to the compute
nodes in the pset. The second application, called CNProc, runs on
the Blue Gene/P compute nodes, where the compute-intensive pro-
cessing takes place. The main tasks are to reorder the data across
the compute nodes over the internal torus network, to filter the data,
and to correlate or beam-form the filtered data. The resulting data
are then sent back to the I/O-node application, that collects the data
from the compute nodes and sends the data to the storage nodes.
This is where the third application (StorageProc) runs. The storage
nodes are PC-like systems with large disks. The storage application
collects the data from the I/O nodes and writes the data to disk.

S. 1/0O-NODE PROCESSING

We use the Blue Gene in an innovative way, by running applica-
tion software on the I/O nodes. On the Blue Gene/L, this required
rewriting major parts of the system software [5], but this idea is
much better supported on the Blue Gene/P.

We run one multi-threaded process on each I/O node that takes
care of two tasks: the handling of input and the handling of output
(see Figure 6). The input section deals with receipt of UDP station
data, buffering, and forwarding to the compute nodes. The out-
put section collects outgoing result data from the compute nodes,
optionally integrates the data over multiple seconds in time, and
forwards the data to storage. An I/O node may run both sections,
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Figure 6: Simplified data flow diagram for the I/O nodes.

only one of them, or none at all, depending on the configuration.
Both tasks are described in detail below.

5.1 The input section

The FPGAs at a LOFAR station send UDP packets with sam-
pled data over a dedicated Wide-Area Network to a BG/P I/O node.
The data are received by the input section. To simplify the imple-
mentation of the correlator, there is a one-to-one mapping between
stations and I/O nodes, so that one I/O node receives all data from
a single station. However, handling the full 3.1 Gb/s data rate of
a station on a relatively slow CPU is quite a challenge, since suffi-
cient processing time must be left for handling output as well. Note
that an I/O node does not run the input section if it is not connected
to a station.

The input section receives the UDP packets, taking care of out-
of-order, duplicated, and lost packets. At each station, four of the
FPGAs send data to their associated I/O node, each FPGA to a
different UDP port. The I/O node runs four “input” threads, one
thread per socket. Multiple threads are necessary, since a single
core is too slow to receive all data. Together, the threads receive a
total of 48,828 packets per second.

The samples from the received UDP packets are copied into a
circular buffer that holds the most recent 2.5 seconds of data. The
buffer serves three purposes. First, it is used to synchronize the
stations, since the travel times over the WAN are higher for the
remote stations than for the central stations. Second, the buffer
prevents data loss due to small variations in processing times of the
remainder of the pipeline. Third, the buffer is used to artificially
delay the stream of samples, as we will explain in Section 6.3. The
buffer is limited by the small memory size, but due to good real-
time behavior of the application, 2.5 seconds is sufficient.

Another thread reads data from the circular buffer and sends the
data to the compute nodes for further processing. It sends data in
large bursts that contain approximately one second worth of sam-
ples. Unfortunately, existing network software did not provide suf-
ficient bandwidth and consumed too much CPU time. We therefore
developed FCNP (Fast Collective-Network Protocol), a network li-
brary for high-bandwidth communication between the I/O nodes
and the compute nodes [12]. FCNP achieves link-speed bandwidths
for large messages, due to its low overhead. The data are sent di-
rectly from the circular buffer without additional copying. In con-
trast to the UDP receive, one thread is sufficient to obtain the re-
quired throughput, thanks to the low processing overhead of FCNP.

The correlator typically processes in real time, but can also cor-
relate pre-recorded data off-line, frequently used for experimental
observations. When processing in real time, the NTP-synchronized
wall-clock time is used to trigger the sending of a new block of
data. A block of data containing samples from time ¢, to #, are sent
some hundreds of milliseconds (the WAN delay plus a safe mar-

gin) after #,, whether or not all data were actually received from
the station. This ruthless method assures real-time continuation of
the correlator and provides fault-tolerance against a failing station
or WAN link. In practice, this method causes hardly any data loss.
When processing off-line, the input is read from file or TCP socket
rather than a UDP socket. In off-line mode we do not use the wall-
clock time as trigger, but we synchronize the threads that read and
write the circular buffer differently to prevent them from overtaking
each other.

5.2 The output section

The bulk of the signal processing is done on the compute nodes,
on which we elaborate in Section 6. The resulting output data are
sent back to the I/O node. The second major task of the I/O-node
application is the output section, that handles output data. This task
consists of four operations.

First, the data are received from the compute nodes, also using
FCNP. Second, the data are optionally added to previously received
data from other compute nodes in the pset, if integration over mul-
tiple seconds is desired. Third, the (possibly integrated) output
is queued in a buffer. Fourth, another thread asynchronously de-
queues the data and sends them to a storage node, using TCP.

The queue improves real-time behavior and increases fault toler-
ance, since it handles data on a best-effort basis. If, for any reason,
the data are not sent quickly enough to the storage node (e.g., due
to a disk or network failure), the queue fills up and subsequent data
are simply discarded until space is available. This mechanism is
important to keep the correlator running in real time: it is much
better to lose a small part of the data than to stall the entire corre-
lator and lose all data. In practice, under normal circumstances, no
data are lost here.

5.3 Optimizations

Processing power on the I/O nodes is a scarce resource, and most
observation modes are 1/O bound. We performed many optimiza-
tions to improve processing speed. An important improvement was
to implement the function that copies data from a received UDP
packet to the circular buffer in assembly. This way, we can ex-
ploit the efficient 16-byte load and store instructions, which are un-
known to the C++ compiler. Unfortunately, the copy itself cannot
be avoided, since an UDP packet contains data of many frequency
subbands that must be stored to different memory locations.

Despite this optimization, we initially found that copying was
very slow. This was caused by the fact that the PowerPC 450 can-
not handle TLB! misses in hardware, but generates an interrupt
and handles the fault in software. This is not a problem on the
compute nodes, where the compute-node kernels map all memory
using a few large pages, so that TLB misses do not occur. However,
the I/O nodes run a Linux kernel that typically uses a page size of
4 KiB, generating a huge number of TLB-miss interrupts.

To avoid the interrupts, we use a modified ZeptoOS (Linux-
based) kernel [16]. It allows a process to map 1.5 GiB (out of
2 GiB) of physical memory in its virtual memory map, using six
fixed mappings of 256 MiB that are never evicted from the TLB.
Hence, this memory does not generate TLB misses. The remainder
of the memory is used for normal, paged operation. The applica-
tion uses the fast memory for the circular buffer and for the out-
put queues. Copying data from received UDP packets to the input
buffer is up to five times faster than when using paged memory.

To achieve good real-time behavior, we found that it is of utmost

ITranslation Look-aside Buffer: a cache that caches virtual-to-
physical address mappings — indispensable for efficient virtual
memory.
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Figure 7: Simplified data flow diagram for the compute nodes.

importance to carefully manage thread priorities using the Linux
real-time scheduler. Since the compute nodes must always be able
to proceed, they must be fed with data without delays. Therefore,
the thread that sends data from the circular buffer to the compute
nodes runs at the highest priority, and is scheduled as soon as the
wall-clock time triggers. The thread that reads results from the
compute nodes is almost equally important, since compute nodes
will not accept new work before the previous results were read by
the I/O node. Other threads, such as the threads that read UDP
data, and the threads that send data from the output queues are also
important, but if they would ever fail to meet a real-time deadline,
only a small amount of data is lost. In practice, under normal cir-
cumstances, this rarely happens (see Section 7.1).

6. COMPUTE-NODE PROCESSING

The bulk of the signal-processing computations take place on
the compute nodes. In this section, we continue describing the pro-
cessing pipeline depicted in Figure 5. We explain how the work is
scheduled over the compute nodes, how the data are received from
the I/O nodes, how the data are exchanged between other compute
nodes, what signal processing takes place, and which optimizations
were implemented. The compute node pipeline is shown in more
detail in Figure 7.

6.1 Scheduling
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Figure 8: Round-robin processing of work over compute-node
cores.

The I/O node chops the data stream that comes from the station
into chunks of one frequency subband and approximately one sec-
ond of time. Such a chunk is the unit of data that is sent to the
compute node for further processing. Since processing a chunk
typically takes much longer than one second, the chunks are round-
robin distributed over a group of processor cores, as illustrated by
Figure 8. Subsequent chunks are processed by different processor
cores. A core must finish its work before it is time to process the
next chunk. A core first receives data from the I/O node (green in

the figure), processes them (yellow), sends back the results (red),
and idles until the I/O node sends new data.

For simplicity, Figure 8 shows the processing of three subbands
on six cores. In reality, scheduling is more complex. The subbands
that must be processed are first (more or less) evenly divided over
the psets. Typically, a pset is responsible for a fixed set of four to
sixteen subbands. Then, the subbands are round-robin scheduled
over the 64 cores within the pset. For example, if a pset processes
six subbands, every second, the next six cores are scheduled and
each of the cores will process one subband. In this example, the
available time to process one subband is ten seconds (L(’—:J). Since
consecutive chunks of a particular subband are always processed
by cores within the same pset, the output for the subband is always
sent via the same 1/O node. This greatly simplifies communication
to the storage nodes and avoids all-to-all communication over the
10 GbE switches. If we would have scheduled all subbands over
one large pool of compute cores rather than psets, additional com-
munication over the torus to reroute the output would have been
necessary. On the BG/L, this could not be implemented efficiently
due to the inability to asynchronously communicate data using a
DMA engine; on the BG/P, it unnecessarily increases torus com-
munication.

6.2 All-to-All data exchange

The compute nodes perform several operations on the data, as
shown in Figure 7. The very first step is to exchange data with
another group of processor cores. This is necessary, because an
I/O node receives all frequency subbands from one station, but the
correlator requires one frequency subband from all stations (we ex-
plain this in more detail below). The data exchange is challenging,
since it involves hundreds of gigabits per second. Unfortunately,
an I/O node cannot send the data directly from the circular buffer
to the compute core that will process the data, since the I/O node
is only connected to the compute nodes in its own pset. The data
are thus first sent over the collective network from the I/O node to
a compute node and then over the 3-D torus network. The torus
provides high bandwidth and switches packets efficiently.

Figure 9: The bandwidth between colinear nodes is lower than
between non-colinear nodes.

The torus bandwidth between colinear and coplanar nodes is
lower than between non-coplanar nodes, since non-coplanar nodes
communicate over more links (in three dimensions) simultaneously.



Figure 9 illustrates this; the bandwidth between nodes A and B is
(in theory) three times as high as the bandwidth between nodes A
and C (in practice, it is somewhat less). Therefore, we schedule
work that needs exchange of data on non-coplanar cores as much
as possible. We also schedule the work so that multiple cores of
the same processor do not need to access the torus or collective
network simultaneously, since these resources are shared and si-
multaneous access decreases performance. The program parts that
implement the data exchange and scheduling are, in the presence of
many stations, many subbands, time slicing, round-robin core allo-
cation, and avoidance of resource conflicts, extremely complicated,
but highly efficient.

On the BG/L, the data exchange was implemented synchronously,
using MPI_Alltoallv(). The BG/P, in contrast, uses DMA for the
torus, allowing asynchronous communication. We re-implemented
the data exchange using asynchronous point-to-point communica-
tion, that overlaps the communication over the torus network with
the data transfer from the I/O nodes to the compute nodes, and with
the next four processing steps. As soon as a chunk of data from one
station has arrived, the core starts processing them, up to the point
that the data from all stations are required.

6.3 Signal processing

After the data exchange, a compute core possesses the samples
of one subband, from all stations. The data are processed through
a number of filters, as briefly described below. More details on the
filters (except bandpass correction and beam forming) can be found
elsewhere [13].

The subband data are first filtered by a Poly-Phase Filter bank
(PPF) that splits a frequency subband into narrow frequency chan-
nels, trading time resolution for frequency resolution. The high
frequency resolution allows for removal of narrow-band RFI later
in the pipeline. The PPF itself consists of a number of 16-tap Finite
Impulse Response (FIR) filters, the outputs of which are Fourier
Transformed. Typically, a 195 KHz subband is split into 256 chan-
nels of 763 Hz, but the filter supports any reasonable power-of-two
number of channels for different observation modes. The FIR fil-
ters and a 256-point FFT are implemented in assembly, for optimal
performance. For other FFT sizes, we use the Blue Gene “Vienna”
version of FFTW [7]. This demonstrates the flexibility of a soft-
ware solution: our software automatically designs a filter bank with
the desired properties and number of channels at run time, generat-
ing the FIR filter constants on the fly.

As a side effect, the PPF implicitly converts 4-bit, 8-bit, or 16-
bit little-endian integer samples to 32-bit big-endian floating point
numbers, since the Blue Gene is much better at floating-point pro-
cessing than integer processing. Unfortunately, the FPU has no
hardware support for integer-to-floating-point conversions (unlike
floating-point-to-integer conversions). We use a look-up table to
convert 4-bit and 8-bit numbers, and a reasonably efficient series of
integer and floating-point instructions to convert 16-bit numbers.
Since the conversion increases the data size, the PPF runs after the
data exchange.

The next step is delay compensation. Due to the finite speed
of electromagnetic waves, the wavefront from a celestial source
hits stations at different times (see Figure 10). The time difference
depends on the direction of the observed source and on the station
positions, and is continuously altered by the rotation of the earth.
Before the signals can be correlated, all station streams are aligned,
by artificially delaying the streams of station samples. For example,
the bulk of a delay of 22 us is achieved by shifting four 5.12 us
samples. This shift was already done on the I/O node, by moving
the read pointer of the circular buffer (see Section 5.1). Here, on

Figure 10: The left antenna receives the wave later.

the compute nodes, the remaining error (1.52us) is corrected by
rotating the phase of the signal. The phase rotation itself costs a
complex multiplication per sample. Since the rotation depends on
the frequency, the correction is done after the PPF: the correction
is more accurate on narrow frequency channels. The delays are
computed exactly for the begin time and end time of a chunk, and
interpolated in frequency and time for each individual sample, with
another complex multiplication.

The bandpass correction step compensates for an artefact intro-
duced by a station filter bank (a PPF on the FPGAs that created the
subbands). Without correction, some channels contain more power
than others. The correction is performed by multiplying each com-
plex sample by a real, channel-dependent value that is computed
in advance. A station cannot correct for this artefact itself, since
it is only visible in channels, not in subbands. Another document
describes how the correction factors are computed [11].

Up to this point, processing the chunks from different stations
can be done independently, but from here on, the data from all sta-
tions are required. This means that the asynchronous data exchange
ends here.

The next step, called beam forming, is optional, and adds the
samples from a group of co-located stations, so that the group forms
a virtual “superstation” with more sensitivity. This step will typi-
cally be used in European observations. From the perspective of
an international station, the baselines to the core stations are nearly
identical. Treating the baselines separately makes no sense and
increases the correlator output unnecessarily. Therefore, the core
stations will be grouped. Other uses of grouped, beam-formed sta-
tions are foreseen.

This coherent way of beam forming is a special case of the beam
forming algorithms that are also used for pulsar and transient obser-
vations. With coherent beam forming, the (phase-corrected) com-
plex samples from different stations are added. The applied phase
correction determines the observation direction. Incoherent beam
forming is performed by adding the powers (amplitudes) of the
samples. Since the phase information is lost, this mode sees a much
larger part of the sky, and is used to search for unknown pulsars.
Both modes are implemented but not optimized yet, therefore we
do not include them in the performance measurements of Section 7.

In the standard imaging mode, the samples from individual or
grouped stations are correlated. Computationally, this is the most
time-consuming operation. The received signals from sky sources
are so weak, that the antennas mainly receive noise. To see if there
is statistical coherence in the noise, simultaneous samples of each
pair of stations are correlated, by multiplying the sample of one sta-
tion with the complex conjugate of the sample of the other station.
To reduce the output size, the products are integrated, by accumu-
lating all products. We accumulate 768 correlations at 763 Hz, so
that the integration time is approximately one second, the size of a
chunk. Correlation is done for each pair of stations, and for each
channel separately. Since the correlation of station A and B is the
complex conjugate of the correlation of station B and A, only one
pair is computed. Stations are also autocorrelated, i.e., with them-



selves. Both polarizations of station A are correlated with both po-
larizations of station B, yielding correlations in XX, XY, YX, and
YY directions. The result, a correlation, contains the combined
contribution of all visible sky sources. These are disambiguated
during the imaging step in the off-line processing pipeline.

We support concurrent pulsar and imaging observations, even on
the same data. This is not only computationally more efficient (the
computations in the shared components of the pipelines are done
only once), more astronomical science can be done with a single
observation. Additionally, in the future these pipelines can mutu-
ally benefit from each other. For example, the correlations from the
standard imaging pipeline can be used to calibrate the station sam-
ples in real time in a feedback loop, so that the pulsar pipeline can
beam-form calibrated samples. This would not be possible without
correlating the data, and would be particularly useful to compensate
for station clock drifts, for example.

6.4 Optimizations

For optimal performance, time-critical code is written in assem-
bly, because the performance from compiled C++ code was by far
not sufficient. We maintain equivalent C++ reference code for test-
ing and portability. The assembly version hides load and instruction
latencies, issues concurrent floating point, integer, and load/store
instructions, and uses the L2 prefetch buffers in the most optimal
way. Most instructions are parallel fused multiply-adds, that sus-
tain four operations per cycle.

Although the FIR filters, FFTs, delay compensation, and band-
pass correction are conceptually separate, consecutive blocks, their
implementations are highly interleaved to achieve better perfor-
mance. This increases the efficiency of the L1 cache. Also, the
data are laid out in memory in such a way that they are read con-
secutively as much as possible, allowing burst transfers through the
cache hierarchy.
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Figure 11: The correlation triangle is divided into as many 2 x2
tiles as possible.

An example of an optimization that we implemented is the reduc-
tion of memory references by the correlator [13]. This is achieved
by keeping correlations that are being integrated in registers, and
by reusing samples that are loaded from memory as many times
as possible. A sample can be used multiple times by correlating
it with the samples from multiple other stations in the same loop
iteration. For example, a sample from station A in the X polariza-
tion that is loaded into a register pair can be correlated with the
X and Y polarizations of stations B and C, using it 4 times. In fact,
it is used 8 times, since a complex multiply/accumulate requires
two instructions. Figure 11 shows how we correlate multiple sta-
tions at the same time. Each square represents the XX, XY, YX,
and YY correlations of the stations as indicated by row and col-

umn number. The figure is triangular, because we only compute
the correlation of each pair of stations. The squares labeled “A”
are autocorrelations, that are treated specially since they require
fewer computations. The triangle is divided into as many 2 X 2
tiles as possible. With this size, the best performance is obtained.
For example, the lower right-hand-side rectangle correlates stations
8 and 9 with stations 0 and 1. The X and Y samples of each of
these four stations are read, requiring eight memory load instruc-
tions (one load instruction reads a complex sample). Computing
the correlations requires 128 real operations, i.e. 32 instructions.
Hence, four floating-point instructions per load instruction are per-
formed. An unoptimized implementation would perform four times
more memory accesses, making the memory subsystem a severe
bottleneck. The interleaved correlation computations also help to
hide the 5-cycle instruction latencies of the fused multiply-add in-
structions, since the correlations are independently computed.

7. PERFORMANCE EVALUATION

Since only a small number of LOFAR stations has already been
constructed (the majority will become operational later this year),
we will provide performance measurements with externally gener-
ated artificial data. We use one Blue Gene/P rack to generate UDP
data, another rack for the correlator, and the remaining half rack
to receive and dump the correlated data. The simulation is realis-
tic, since the correlator runs exactly the way it would run with real
station data. The storage section, however, does not write the data
to disk, since we do not have enough storage nodes available yet,
but this does not influence the performance measurements of the
correlator. With one rack, we can process up to 64 stations, one per
1/O node.

Observation mode A B C
nr. bits per sample 16 8 4
max. nr. of subbands 248 496 992
nr. channels per subband 256 256 256
max. nr. of stations 64 64 48
input bandwidth 64*31 64*3.1 48*3.1

(nr. I/O nodes * Gb/s) =198 =198 =149
output bandwidth 62*0.58 62*12 62*%13

(nr. I/O nodes * Gb/s) =36 =72 =81
available compute time 16.1 8.05 4.03

per subband (s)

Table 1: Characteristics of three realistic, challenging observa-
tion modes.

We show the performance results of the application by means of
three challenging observation modes which are likely to be com-
monly used. The characteristics of these modes are listed in Ta-
ble 1. Mode A is the standard mode, where the stations send 16-bit
samples. In this mode, the FPGAs can send at most 248 subbands.
The 248 subbands are evenly divided over 62 psets, so that each
pset processes 4 subbands (the remaining two psets handle input
data, but do not correlate). Since there are 64 cores in one pset and
an integration time equals 1.007 second (768 samples), the avail-
able time to process one chunk of data (1 subband) is 16.1 second.

Mode B trades accuracy for observation bandwidth, by reduc-
ing the sample size to 8 bits and doubling the number of sub-
bands. This doubles the number of frequencies or beams that are
observed simultaneously. It implies that the total input data rate
remains the same, but that the processing requirements and output
data rate double. The 62 psets that are used to correlate have to



process 8 subbands each, reducing the available time per subband
to 8.05 second.

Mode C uses 4-bit samples, and is only suitable for frequency
subbands that are mostly free of RFI (otherwise, the bits are used to
encode the RFI, not the signal of interest). This mode is planned for
Epoch-of-Reionization (EoR) observations, where the high number
of subbands is used to observe the sky at 32 MHz bandwidth in
six directions simultaneously. If the same amount of stations were
used, the processing requirements and output data rate would dou-
ble again, but EoR observations will only use the stations near the
center, not the remote ones. The exact number of stations that will
be correlated is not yet known, but is likely between 36 and 46. For
the performance measurements, we assume the most challenging
case, and use 48 stations.

7.1 Performance on the I/0 Nodes
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Figure 12: I/O node performance breakdown.

The 1/O requirements are challenging, and the processing power
on the I/O nodes is limited. Figure 12 shows where the cores of
the I/O nodes spend their time in various situations. The five major
tasks are each represented by a different color in the bar graph; the
size of each bar is proportional to the contribution to the total work
load. A load of 100% means that all four cores are fully occupied.
A load above 85% must be avoided to prevent major data loss.

We first show how the performance scales with the number of
subbands. We use a setting resembling observation mode B, for
up to 496 subbands, see Figure 12(a). The I/O nodes receive and
forward the samples of one station (up to 3.1 Gb/s) and send the
correlations of up to 8 subbands to storage (up to 1.2 Gb/s). The
figure shows that most time is spent in the receipt of UDP packets.
This amount is partially independent of the number of subbands,
since a lower number of subbands decreases the packet size (down
from 7,998 bytes), but not the amount of packets. The I/O nodes
have to handle 48,828 packets per second. All other work scales
linearly with the number of subbands.

Figure 12(b) shows the performance breakdown for the three
challenging observation modes. In the standard 16-bit sample mode,
the stations can produce at most 248 subbands (observation mode

A). Hence, the output data rate (the lower two bars) is twice as low
as in the 8-bit mode of scenario B. Also, copying 16-bit samples
into the circular buffer is somewhat more efficient, due to L3-cache
effects. In the 4-bit mode, only 48 stations are used. Due to the
reduced number of stations, the output data rate is only 13% higher
than in the 64-station/8-bit mode, rather than twice the bandwidth
of observation mode B.

Both FCNP and the fixed TLB mappings significantly contribute
to the low resource usage. Without either of them, the application
cannot handle these data rates in real time.

The data loss due to missed UDP packets is low: only between
1 per 10° and 1 per 10* packets are dropped under full load. These
numbers include the data loss caused by the (software) generators
and by the 10 GbE network switches. The data loss is negligible
to other places where data can be lost, (e.g., the flagger sometimes
rejects tens of percents of the data due to RFI), and does not hurt
the astronomical signal quality.

With the I/O-related optimizations, we obtain sufficient band-
width to support all currently foreseen observation modes on a sin-
gle rack. If the requirements would change and the need would
arise to achieve even higher bandwidths, UDP packet receipt could
be optimized by not using the read() system call interface, but
by using another interface that reads the data directly from kernel
buffers and does not enforce a (370 MiB/s!) kernel-to-user-space
copy. Right now, we felt no need to implement the required kernel
changes. Alternatively, the second rack could be used.

7.2 Performance on the Compute Nodes
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Figure 13: Compute node performance breakdown.

Figure 13 shows how the compute nodes spend their time. The
vertical axis shows the execution time to process one subband with
1.007 second of station samples.

Before presenting the performance of the three observation modes
described above, we show how the performance scales with the
number of stations. Figure 13(a) shows execution times for up to
64 stations in a setting that is similar to observation mode B. The
O(n*) complexity of the correlator is clearly visible (the correla-
tions between all pairs of stations are computed), while other com-



ponents scale linearly with the number of stations. Despite the high
data rates, I/O requires hardly any time on the compute nodes. It is
important to realize that the time for input or output cannot exceed
1/64™ of the total time, since the associated I/O node also needs
time to communicate with the other 63 cores in the pset.

The performance results hardly differ for the 16-bit and 4-bit
modes, since only the performance of the data receipt from the
I/O node and data exchange phase are affected by the sample size,
both of which hardly contribute to the total run time. This is clearly
illustrated by Figure 13(b), where the execution times for observa-
tion modes A and B are nearly the same. The run time for obser-
vation mode C is lower, since this mode processes 48 rather than
64 stations. All modes run within their real-time constraints of
16.1, 8.05, and 4.03 seconds respectively. The load on the com-
pute nodes is 35%, 70%, and 84% respectively.

The asynchronous transpose is much more efficient than the orig-
inal synchronous version. It successfully overlaps communication
with computations, reducing the data exchange overhead by roughly
a factor of four.

The correlator is extremely efficient: it achieves 96% of the FPU
peak performance, thanks to the highly-optimized assembly code.
The FIR filter runs at 86% of the peak performance, and the hand-
crafted 256-point FFT runs at 44%. Compared to “Vienna” FFTW,
which is already efficient, our hand-written FFT is about 34% faster.
Compared to equivalent C++ code that is written for clarity and
not specifically tuned for optimal performance, the hand-written
assembly code is typically an order of magnitude faster.

Due to all optimizations, the correlator can process 50% more
data than the specifications require, on only half the amount of
planned resources. Only if the need to correlate more than 64 sta-
tions would ever arise, or if significant additional real-time signal
processing would be needed, the second rack must be employed.
We can exploit the compute power we saved to run other observa-
tion types simultaneously, or to do additional signal processing that
improves the signal quality, such as real-time flagging and real-time
calibration.

8. ASTRONOMICAL RESULTS
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Figure 14: Correlations from a 9-hour observation.

A graphical representation of the correlator output is depicted
in Figure 14. The figure shows the cross-correlations from two
stations during a 9-hour observation. The horizontal axis varies
in time; the vertical axis represents the 256 channels of one fre-
quency subband. Each pixel corresponds to a (complex) correla-
tion, where the color represents the phase of the signal; the intensity
matches the amplitude (power). The phase changes over time, due
to the earth rotation that alters the relative position of the observed
sources and thus the time difference between the two stations. The
white spots are caused by RFI; these bad data are detected and ig-
nored in the remainder of the processing pipeline.

The correlations are used to create images. Even with the lim-
ited amount of prototype antennas that have been employed during
the last few years, impressive (all-sky) images were made (see Fig-
ure 15). Also, the prototype pulsar pipeline software successfully
detected several known pulsars [4].

Figure 15: An all-sky image created with prototype LOFAR
antennas.

9. RELATED WORK

The idea to implement a correlator in software has been adopted
by others as well. However, the LOFAR correlator is the only sys-
tem capable of processing a large number of inputs at high data
rates in real time. Other systems handle only a few inputs, handle
limited data rates, or do not run in real time.

Deller et al. [3] have developed the DiFX distributed software
correlator, which is to be deployed on a cluster of PCs. Due to the
use of commodity hardware, both their communication and com-
putational capabilities are substantially lower than those available
in our Blue Gene/P. The real-time data processing of the Murchi-
son Widefield Array (MWA) telescope is implemented partially in
software. However, their correlator, computationally the most de-
manding part of the processing pipeline, is not implemented in soft-
ware, but on FPGAs [10]. Finally, the Joint Institute for VLBI in
Europe (JIVE) develops a new software correlator for e-VLBI ob-
servations, but is not capable of processing telescope data in real
time [6], even though the title of their paper suggests otherwise.

In another paper, we compare the efficiency of five many-core
architectures (GPUs from Nvidia and ATI, the IBM Cell BE, the
Blue Gene/P, and the Intel Core i7) for correlation purposes [8].

10. DISCUSSION, CONCLUSIONS,
AND FUTURE WORK

In general, we are rather satisfied with the capabilities of the
Blue Gene/P as a platform for a real-time correlator. The double
FPU is highly efficient and provides excellent support for complex
numbers, which is indispensable for signal processing. The rela-
tively high memory bandwidth helps to keep the FPUs busy. The
3-D torus easily handles the all-to-all exchange, thanks to the high
bandwidth, its switching capabilities, and a DMA controller. We
also think that the programming environment of the Blue Gene/P is
a considerable improvement over its predecessor, and are pleased
with the open programming interfaces. The power efficiency of the
Blue Gene/P is good. The Cell BE is more energy efficient [8], but
does not incorporate a high-speed interconnect.

There are some disadvantages as well. Most notably, the sep-
aration of compute nodes and I/O nodes, along with their limited
connectivity (within a pset only), and the use of two networks types



complicates and impedes efficient streaming of data into the ma-
chine. For example, data cannot be sent directly from an I/O node
to compute nodes outside its pset. Also, the absence of a hard-
ware TLB-miss handler causes significant performance degradation
with paged memory. Furthermore, double-precision floating-point
arithmetic is overkill for our application. While many other ar-
chitectures (e.g., the IBM PowerXCell 8i, SSE) provide twice the
number of FLOPS for single-precision arithmetic, this is not the
case for the Blue Gene. A minor disadvantage is the omission of an
integer-to-floating-point conversion instruction. Finally, the need
to use assembly to obtain sufficient performance complicates pro-
gramming; the gap with compiled C++ code is large.

To handle the high LOFAR station data rates, we use the 1/O
nodes in an unorthodox way: they run the part of the application
software that takes care of external communication. A custom net-
work protocol (FCNP) provides link-speed bandwidths between the
I/O nodes and compute nodes, and reduces the CPU utilization. On
the I/O nodes, the use of a large, pinned memory area avoids exces-
sive amounts of TLB-miss interrupts. Managing thread priorities
using the Linux real-time scheduler is important to achieve good
real-time behavior. Special provisions were made to obtain fault
tolerance against station, WAN link, and disk failures.

Furthermore, we demonstrated that the correlator achieves ex-
ceptionally high performance, both computationally and with re-
spect to I/O, due to the applied optimizations. The correlations
are computed at 96% of the FPU peak performance; other signal-
processing functions perform impressively as well. The work dis-
tribution scheme is efficient but complex, due to the real-time re-
quirements, the need to exchange data, and the avoidance of re-
source contention.

We showed performance measurements for the most challenging
observation modes that are currently foreseen. Due to the optimiza-
tions, we need only half the amount of planned resources to process
50% more station data than the LOFAR specifications require. The
latter ability led to the decision to adjust the specifications, resulting
in a major improvement in the effectiveness of the entire telescope.

Traditionally, real-time telescope data are processed using cus-
tomized hardware. However, LOFAR’s innovative, dishless de-
sign, with many thousands of omni-directional antennas, allows
new types of observations that need different processing pipelines.
The required flexibility is obtained by using the software presented
in this paper. For example, we have other functional pipelines for
pulsar observations, that we are currently optimizing. Future work
includes the integration of other processing pipelines, real-time cal-
ibration, and possibly real-time RFI removal.
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