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Abstract. The Square Kilometre Array (SKA) is the radio telescope of the next generation, pro-
viding an increase in sensitivity and angular resolution of two orders of magnitude over existing
telescopes. Currently, the SKA is expected to span the frequency range 0.1−25 GHz with capa-
bilities including a wide field-of-view and measurement of polarised emission. Such a telescope
has enormous potential for testing fundamental physical laws and producing transformational
discoveries. Important science goals include using H2O megamasers to make precise estimates
of H0, which will anchor the extragalactic distance scale, and to probe the central structures of
accretion disks around supermassive black holes in AGNs, to study OH megamasers associated
with extreme starburst activity in distant galaxies and to study with unprecedented precision
molecular gas and star formation in our Galaxy.

1. Overview
The Square Kilometre Array (SKA) is a paradigm-shifting radio telescope for the next

generation, providing an increase in sensitivity and angular resolution of two orders of
magnitude over existing telescopes. It will be a truly global machine with an expected life-
time of at least 50 years. Such a telescope has enormous potential for testing fundamental
physical laws and producing transformational discoveries. The aim of the telescope is to
answer some of the ”big” questions in astronomy, such as what is the nature of dark
energy, are we alone in the Universe, how did galaxies and black holes form, what is the
origin and evolution of cosmic magnetism, can pulsars be used to detect gravity waves?

The project is an international consortium of 50 institutions, spread over 17 coun-
tries. Present governance is through the International SKA Steering Committee, with 21
members, which oversees the International SKA Project Office and 6 targeted Working
Groups. Engagement with inter-governmental agencies has begun to establish a gover-
nance model and funding strategies. Currently, there are several pathfinder and demon-
strator projects in progress for both science and technology developments.

2. SKA Concept
The concept of this instrument is based on the following principles:
• A data network of sensors of the electromagnetic field are connected using a corre-

lator to produce an interferometric array.
• The sensing antennas will be highly concentrated in a central core, with 20% of the

collecting area within 1 km, 50% within 5 km and 75% within 150 km. Outlier stations
will be distributed at distances up to at least 3000 km from the core.
• Antennas and stations will be connected via wide-band optic fibre links (data rates

at 100 Gbits/sec) to the central processor, which will need to process 10 – 100 Pflops/sec.
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• The telescope will be built in stages, with Phase 1 planned to be 10% of the total
collecting area and able to undertake unique science.

3. Status at March 2007
Following a rigorous and objective assessment, two sites to host the SKA have been

shortlisted for further evaluation and development. The locations encompass Australia
and New Zealand, and South Africa with 7 partner countries. The key issues in the site
selection process were a very low RFI environment, a large unencumbered site and low
ionospheric and tropospheric turbulence. A site decision is expected about 2010 with the
complete SKA operational in 2020.

A second milestone was the selection of a Reference Design, which was developed to
focus engineering and science efforts, to provide the basis for detailed costing models and
to provide a recognisable image for the SKA. The design is likely to evolve, but at present
it comprises small dishes with smart feeds with aperture arrays for the lower frequencies.

4. Expected capabilities
The current SKA model has an estimated cost of about 1 Billion Euro for construction

with an annual operating budget of about 70 Million Euro. This is based on the following
intended capabilities and specifications:
• A sensitivity at least 50 times more than the EVLA. This will enable detection of

atomic hydrogen and other molecules right to the edge of the Universe. The specifications
are for a continuum sensitivity of 0.4 µJy in 1 hour and a spectral line sensitivity of 5
µJy/channel after 12 hours (both 5σ detections). To achieve this requires a very large
collecting area, ∼ 1 square kilometre.
• A fast survey speed, up to 10,000 times better than currently possible. This requires

a very large field of view, projected to be 1 square degree at 1.4 GHz and 18 square
arcminutes at 20 GHz.
• A wide frequency range of 0.1 – 25 GHz, to handle the key science priorities.
• Moderately high angular resolution to make detailed images of structures including

disks, outflows and planetary gaps. To do this requires a large physical extent, at least
3000 km, to produce beamsizes of 20/fGHz mas. The size is limited by the Earth, if one
assumes a real-time connected ground-based array.
• Good spectral resolution, with more than 4000 dual polarization channels to give

velocity resolution of at least 0.2 km/sec.

5. Science goals for maser research
The strength of the SKA will be its great sensitivity with a wide field of view. Angular

resolution is constrained by the size of the Earth. There are two main threads for the
maser science projects, namely, one which focuses on the early Universe, dark energy and
galaxy evolution, and one which will make discoveries in our Galaxy on star formation
mechanisms and the interstellar medium.

5.1. Masers in the early Universe
Megamasers (MM) of the OH and H2O molecules will be used to study the properties of
prominent populations of active galaxies at cosmological distances. Extragalactic maser-
ing activity relies on amplification of radio continuum by foreground pumped molecular
gas and the large pathlengths in galactic nuclei.
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H2O MMs are a signpost of AGN activity that may be used to study dark energy,
make precise estimates of H0 to anchor the extragalactic distance scale, and to probe the
central structures of accretion disks around supermassive black holes (see Greenhill, these
proceedings). Direct mapping of nuclear Keplerian disks such as found in the archetypal
NGC 4258 (e.g. Claussen et al. 1984, Nakai et al. 1993, Haschick et al. 1994, Herrnstein
et al. 1999) will enable determination of precision distance scales out to about 500 Mpc.
For unresolved nuclear disks, observed velocity drifts and rotation velocities will extend
this distance scale, albeit with less precision, well into the Hubble flow. More than a 1000
water masers may be detected to a flux limit of about 10 mJy (see Braatz et al., these
proceedings, for current catalog). The most distant H2O maser found to date is in quasar
SDSS J0804+3607 at a distance of 2.4 Gps (Barvainis & Antonucci 2005), which shows
that molecular gas exists at very early epochs. A second class of H2O MM probes the
interaction between radio jets and encroaching molecular clouds away from the AGN,
such as seen in nearby NGC 1052 (Claussen et al. 1998) or Mrk 34 at a distance of 205
Mpc (Henkel et al. 2005) or the FR-II radio galaxy 3C 403 (Tarchi et al. 2003).

Powerful OH MMs are associated with extreme starburst activity in (ultra-)luminous
infrared galaxies (ULIRGs) resulting from mergers and interactions (see Darling, these
proceedings). The redshift distribution of these dusty starburst galaxies reflects the
galaxy merger history of the universe (Townsend et al. 2001, Briggs 1998). The SKA
can probe this population of ULIRGs up and beyond its peak at redshifts between 2
or 3. Typical extended OH MM emission structures can be imaged up to redshifts of
0.6. Powerful OH Gigamasers in the most luminous ULIRGs have been detected and
imaged out to redshifts of 0.265 (Baan et al. 1992, Darling & Giovanelli 2001, Pihlström
et al. 2005). The FIR radiation field provides the pumping for the OH molecules and
masering action increases with the FIR luminosity (Baan 1989, Henkel & Wilson 1990).
The OH emission traces the filaments and cloud in the nuclear ISM and the toroidal
structures of 60-100 pc that may surround the nucleus (Rovilos et al. 2003, Klöckner
et al. 2003). The properties of the prototype OH MM Arp 220 are described elsewhere
(Baan, these proceedings). The OH MM emission also probes starburst-related outflows
and the surroundings of the population of supernovae and SNR in the nucleus (Rovilos
et al. 2005, Lonsdale et al. 2006). The nuclear emission studies of OH MM complement
similar studies with ALMA.

5.2. Galactic and extragalactic masers of many flavours
The SKA will be used to study with unprecedented precision molecular gas and star
formation in our Galaxy and nearby galaxies. There are no massive stars in the solar
neighbourhood and the increased sensitivity will enable detection of large numbers of
protostellar Keplerian disks and mapping of outflows. Molecular masers are common in
the vicinity of newly formed massive stars, and H2O and CH3OH are signposts of massive
star formation and some 70% of UCHIIs in the Galaxy are associated with H2O masers
(Churchwell et al. 1990, Walsh et al. 1998, Minier et al. 2000). Observations with multiple
species of masers will complement the studies of young stellar objects, ultra-compact HII
regions, and evolved stars. We will be able to confirm that Class II methanol masers are
not found near low-mass stars.

One exciting possibility will be to image directly stellar photospheres and stellar winds
in AGB stars and to detect eclipsing planets. Another key science objective will be to
make precision distance measurements in the Galaxy, which will determine peculiar mo-
tions in the spiral arms and resolve many apparent discrepancies in distances to particular
objects (e.g. Xu et al. 2002). Proper motions and parallax measurements will be routine
for a large number of sources.
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Systematic and detailed studies of extragalactic masers associated with evolved stars
and star formation will be possible with the sensitivity and resolution provided by SKA.
For instance, the properties of 1720 MHz OH masers measured in nearby spiral galaxies
such as M33 (expected source fluxes of 3 mJy at a distance of 1 Mpc) can be correlated
with those associated with supernova remnant (SNR)-molecular cloud interactions in our
Galaxy (e.g. Frail et al. 1996, Yusef-Zadeh et al. 1996). Extragalactic H2O kilomasers
may trace weak nuclear activity (as in H2O MM) or massive star-forming regions. NGC
2146 shows that H2O emission from UCHII regions may be detected up to distances of
50 Mpc (Tarchi et al. 2002).

6. Conclusions
A summary of what the SKA is likely to produce for maser science include:
• A large increase in the number of sub-parsec disks around AGNS to be used to study

structure and black hole properties. There will be a big improvement in sensitivity but
the distance limit remains unchanged at about 500 Mpc.
• Probing high density gas in parsec nuclear regions of high redshift galaxies, with no

distance limit. For resolved disks, an outcome will be precision distances and an improved
measure of H0.
• Many more disks and outflows detected for star-forming regions and dusty proto-

clusters in our Galaxy. Masers associated with SNRs will be studied in nearby galaxies.
• Proper motion and parallax studies will give a more precise picture of the structure

and peculiar motion of the spiral arms in our Galaxy.

A more detailed explanation can be found in ”Science with the Square Kilometre Array”,
edited by Carilli & Rawlings in New Astronomy Reviews (2004) volume 48.
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