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Abstract

Accurate knowledge of the station beamshapes (EJones) is crucial for
the new (and existing) radio telescopes, if they are to achieve their adver-
tised performance. This document sketches the problem in an accessible
manner, and outlines a strategy to address it. The good old WSRT could
play an important role in this.

1 Executive Summary

1. The next generation of radio telescopes will be (much) more sensitive and
will put a (much) greater emphasis on accurate wide-�eld, wide-band,
full-polarization imaging.

2. Therefore, 3rd generation calibration (3GC) will require a (much) more
accurate knowledge of individual station beamshapes. The latter are rep-
resented by 2x2 EJones matrices. Fig 4 gives a schematic illustration of
the problem.

3. It is highly unlikely that the required accuracy can be achieved by open-
loop methods, i.e. by using a theoretical model, or an empirical beamshape
that is obtained by scanning across a bright source. Fig 5 gives an estimate
of the required accuracy.

4. Thus, it will be necessary to use closed-loop methods to measure the in-
dividual station beamshapes during the observation, as a function of time
and frequency.

(a) This is a generalization of the successful selfcal method, which solves
for two complex gains per station, using a model of the observed
source(s). These values are strictly valid only in the direction of the
dominating source, but if all station beamshapes are identical they
may be used for the entire �eld. Selfcal was introduced in 1980, and
caused a spectacular improvement of several orders of magnitude (in
a way, it saved the VLA).
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(b) The fact that generalized selfcal solves for more parameters raises
two fundamental issues. The �rst is whether there is su�cient infor-
mation available, e.g. in the form of calibration beacons in the �eld
(see �g 8). The second is whether there are su�cient equations (i.e.
independent measurements) to solve for the number of parameters.
The latter will not be discussed here.

(c) A potential practical problem is the considerable extra processing
that will be necessary. This sets the stage for a trade-o� between
what is possible and what is feasible.

5. The Di�erential Gains (DG) method, developed by Oleg Smirnov, is such
a closed-loop technique. It has been successfully demonstrated on a 21cm
WSRT observation of the 3c147 �eld. It achieved a dynamic range of
3 million, thereby surpassing the earlier record set by NEWSTAR. For
details, see �g 9.

6. Most importantly , this �demonstrated� that, in a typical �eld, and for
wavelengths longer than about 20 cm, there is enough information avail-
able in the form of calibration beacons, i.e. sources with an apparent
brightness greater than a few mJy.

(a) This fundamental calibration issue was veri�ed for LOFAR in the
very beginning. Now, the condition also seems to be met for shorter
wavelengths, at least down to 20 cm. The situation is more favourable
for longer wavelengths because the �eld is larger and the sources are
brighter.

(b) To �rst order, the �nding is independent of station diameter D, since
both the sensitivity and the �eld size depend on D2, and thus cancel
each other out. See �g 8.

(c) NB: This �nding should be a great relief to the designers of SKA,
who must have been worrying about this issue. Therefore, it is a
little puzzling that this was not instantly recognized.

7. The DG method should now be exploited to measure the beamshapes
of all existing radio telescopes, in full polarization, and as a function of
time and frequency. After half a century of poorly veri�ed assumptions,
such an exercise should be a real eye-opener, especially beyond the half-
power point. It will be the subject of a specialized RadioNet workshop in
Portugal later this year.

8. The DG method should also be used to measure the shape and stability
of the beams of the Embrace and Apertif prototype stations, which are
very important for ASTRON.

(a) For Embrace , the results would address the prime AAVP goal of
demonstrating the viability of aperture arrays as a SKA station tech-
nology. Provided the Embrace prototype is modestly enlarged (to
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perhaps 200m2), and ideally made dual-pol, it is quite unnecessary
to build a multi-station demonstrator in Portugal.

(b) For Apertif , the results should guide the development of new cali-
bration software while the full system is being installed on the WSRT
in 2012. The currently planned tests involving one or two adjacent
WSRT dishes are useful, but not su�cient. I

9. The easiest, quickest and cheapest way to do this is by embedding these
prototypes in the WSRT as extra stations. Since the necessary online
and o�ine software already exists, �only� a hardware interface is needed,
possibly based on the old TADU backend.

(a) The full WSRT is needed, partly for spatial resolution (to distinguish
the calibration beacons), and partly because the WSRT system is
highly stable and well-understood1 .

(b) If more than one interface can be built, multiple Embrace or Apertif
stations may be included, up to a maximum of 16 stations. For
instance, each newly installed Apertif frontend could be fully tested
as part of a WSRT that has an increasing fraction of such frontends.
This approach would be superior to, and more versatile than the
planned standalone test system of 6 Apertif dishes.

10. However, time is of the essence. For both prototypes, answers are
really needed before the end of this year (2011). Also, the WSRT might
not be available during much of 2012. Therefore, the implementation of
the hardware interface with the WSRT should start as soon as possible,
so that it is �nished by the summer. In the meantime, specialists in the
Embrace and Apertif teams can be trained in using the DG tool.

1Provided we can solve the recent WSRT closure problems, of course
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2 Introduction

For the moment, this document consists mainly of pictures (albeit with elaborate
captions, which tell much of the story), and an executive summary. The latter
is meant to make the case for creating a link between Embrace (and Apertif)
and the WSRT system. In a later stage, more detail will be added in the various
sections.

Some nomenclature: Our little community has the confusing habit of
using the word beam to indicate either the Point Spread Function (synthesized
beam), the station (voltage or power) response beam, or the element response
beam of an array element (e.g. a dipole). Throughout this document, we will
use the word PSF to indicate the synthesized beam, and consistently pre�x the
word beam with quali�ers like station, power or voltage. We also use the generic
word station not only for an aperture array (e.g. a LOFAR station) but also to
indicate a parabolic dish (rather than telescope (WSRT) or antenna (VLA)).

3 Subtracting bright compact sources

One de�nition2 of calibration is the capability to subtract bright compact fore-
ground sources with high accuracy. After all, this is possible only if the parame-
ters of the Measurement Equation, which includes both the instrument and the
sky model, are known with considerable precision.

3.1 Subtraction of Cat I sources

3.2 Subtraction of Cat II sources

3.3 Frequency calibration

3.4 Intrumental polarization

4 Imaging of Cat III sources

5 Required EJones accuracy

See the caption of �g 5.

6 The Di�erential Gains (DG) method

See the caption of �g 9.

2This is the de�nition used in the LOFAR CDR calibration plan of 2006

4



Figure 1: The calibration quality is measured by the accuracy with which bright
�foreground� sources are subtracted. The most accurate method to do this is by
subtracting the predicted contribution of these sources from the uv-data, before
making a residual image. The source contribution is calculated with the help of
the Measurement Equation (ME), which includes the instrumental model (Jones
matrices) and the Local Sky Model (LSM). Any errors in either the (intrinsic)
source parameters or the instrumental parameters will cause the source to be
subtracted incompletely, but in di�erent ways. First of all, because the observed
sources are the same for all stations, and constant in time, any errors in the
LSM parameters will cause a source remnant in the residual image that is con-
volved with the nominal PSF , i.e. the PSF that is caused by deterministic
imaging e�ects like uv-coverage, weighting and smearing. However, if the prob-
lem is caused by instrumental errors that change from station to station, and
with frequency and time, the source remnant will be convolved with a highly

distorted PSF , in which the sidelobes are often as high as the central peak.
This is illustrated by the image above, which represents one of the �rst results
of �redundant-spacing calibration�, back in 1980. The bottom-left panel shows
the remainder after subtracting the bright source 3c48 without calibration. Its
distorted PSF is dominated by sidelobes caused by instumental errors (mostly
troposphere). The top-right panel shows the well-behaved nominal WSRT PSF
around sources that were either not subtracted at all, or subtracted with the wrong
�ux. Summarizing, the two classes of ME parameter errors may be distinguished
from each other by means of the PSF, and tackled with di�erent methods. NB:
There are situations where the two classes of ME parameters are degenerate,
for instance when the station beams do not rotate on the sky, or when they
are circularly symmetric around the pointing centre. In that case, the average
beamshape may be absorbed into the LSM. But this will not be the case for any
deviations from this average beamshape, per station or in frequency or time.
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Figure 2: Source subtraction
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Figure 3: A typical example of a WSRT �eld with o�-axis dynamic range prob-
lems (Courtesy of Tom Oosterloo). Although the dominating source has been
cleanly subtracted, this has not been possible to a few bright o�-axis sources.
This is caused partly by errors in the source model, and partly by unmodelled
beamshape di�erences.
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Figure 4: In 2nd Generation Calibration (2GC), it is usually assumed that all
station beamshapes are identical, for all frequencies and all times. It is applied
to the data by dividing the �nal image by some idealized beamshape, which is
obtained by means of an open-loop method like mathematical modelling, or
scanning across a bright source. In practice, the beamshapes will vary from sta-
tion to station, in frequency and time. This is schematically indicated here. Note
that, through self-calibration, the station response will usually be normalised in
the direction (l,m) of the dominating source in the �eld. Therefore, the lat-
ter may be subtracted with high accuracy. But other sources in the �eld will
not be subtracted completely, through a combination of beamshape errors and
inaccurate �uxes in their source models. This performance will no longer be
su�cient for the new generation of radio telescopes, with their strong emphasis
on wide-�eld high-accuracy observations. Third Generation Calibration (3GC)
will require accurate knowledge of individual station beams, as a function of fre-
quency and time. This implies the use of closed-loop methods for measuring
the beamshapes continuously during the observation. Such a method is described
in �g 9. Fortunately, there seems to be su�cient information available, in the
form of bright calibration beacons in the �eld. Unfortunately, the extra cost in
processing will be substantial, setting the scene for an agonizing trade-o�. But
at least there will be something to trade o� against
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Figure 5: An incompletely subtracted source will cause dynamic range (DR)
problems if the sidelobe level of its distorted PSF (assumed to be 0.1 here, but
it is probably closer to 0.5 or even higher) exceeds the thermal noise Snoise of
the residual image. The plot indicates the apparent �ux above which this is the
case, given Snoise and the rms error in the station power beams, at the source
position (l,m). The latter is the rms error over time and frequency, and over
all interferometers. This plot may be used to calculate a design criterion

for the required accuracy of the station beamshapes. For the case of the WSRT
(Snoise = 10µJy), sources with an apparent brightness greater than about 10mJy
will cause cause DR problems. The plot then indicates that the rms accuracy of
the passive ifr power beams should be about 1% at the positions of those sources.
The passive errors in the LOFAR or SKA station beams will very likely be larger,
while the DR requirement will be more stringent because their Snoise is smaller.
This means that closed-loop beamshape measurements like the DG method (see
�g 9) will be necessary, using the bright calibration beacons in the �eld. The good
news is that, since the Cat I calibration beacons themselves will be substracted
with the help of their own instrumental gains, the estimated beamshapes only
have to be accurate enough to subtract the fainter Cat II sources (see �g 8 and
5). This represents a considerable relaxation of the requirements.
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Figure 6: A realistic distribution of (intrinsic) source brightnesses in a typical
�eld follows the well-known expression log(N ≥ S) = −log(S), where (N ≥ S)
is the number N of sources with �ux greater or equal than S. This means that
there are α times as many sources with �uxes ≤ S/α than there are sources
with �ux ≤ S. The �uxes are represented by logarithmic marker sizes, where
sources with S ≤ 0.1mJy have a marker of size=1 (not all of them are shown).
Obviously, the contribution of a source to a visiblity sample will be determined
by the apparent �ux, which will be attenuated by a power beam. The latter is the
product of the voltage beams of two stations. Along the bottom of the plot, the
same source �uxes are plotted against their radial position, i.e. their distance
to the pointing centre. The green dots are �signed� radial positions, in the sense
that they are negative for sources with a negative horizontal sky coordinate. The
latter representation is used in �gures 8 and 12 to indicate the total number of
calibration beacons that are available in all directions to sample the 2D station
beamshapes.
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Figure 7: xxxx
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Figure 8: When discussing beamshape calibration, it is useful to distinguish 3
categories of sources. The brightest sources in the LSM are Cat I sources (red
circles). They are bright enough to be used as calibration beacons. Methods
like the DG method (see �g 9) determine the speci�c ME parameter values in
their direction (l,m). These are used to subtract them from the uv-data with
maximum accuracy, and also to estimate beamshape (EJones) parameters. We

suspect that �every source that is bright enough to cause trouble is bright enough to

be tackled individually� (i.e. as a Cat I source). All the other (fainter) sources
in the LSM are Cat II sources (blue). They are subtracted from the uv-data
with the help of the interpolated station beamshapes. Finally, there are many
Cat III sources (black dots). They are too faint (< 5σ in the �nal image) to
be detected for inclusion in the LSM, and thus they cannot be subtracted from
the uv-data. In order to image them properly, the beamshapes must be applied to
the residual uv-data during the gridding process (A-projection). In this picture,
to illustrate the relation of the various source categories to the beamshapes, the
apparent �uxes of the sources are plotted along a station voltage beam. The
scatter represents uncertainties in the LSM source �uxes. Obviously, such LSM
�ux errors in the bright Cat I sources (red) a�ect the estimation of station
voltage beamshapes, while LSM �ux errors in the fainter Cat II sources (blue)
limit the accuracy with which they are subtracted from the uv-data.
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Figure 9: The Di�erential Gains (DG) method, developed by Oleg Smirnov, is
the �rst practical method to measure actual station beamshapes (EJones matri-
ces) in a closed-loop fashion, i.e. during the observation. First, it takes out
the rapid (tropospheric) gain variations in the direction on the dominant source
(in this case 3C147, 21 Jy). Then it solves for the di�erential gains (DG) in
the direction of a number of fainter �calibration beacons� in the �eld. Because
the DGs vary only slowly, it is possible to integrate over 30 minutes or more.
Especially if one does not require the DGs to be constant during that interval,
but solves for the coe�cients of low-order polynomials in time and frequency
(as MeqTrees does). The insets show the estimated DGs for the 6 calibration
beacons, for each of the 14 WSRT stations. Note that the S/N is su�cient to
measure real e�ects. In fact, the vertical bars are not noise, but the variation in
the solution for di�erent frequency channels. The estimated DGs are used �rst of
all to subtract the calibration beacons themselves with maximum accuracy. But
they may also be used to solve for the parameters of individual station beams
as a function of time and frequency, as is illustrated in �g 11. These are then
interpolated to subtract fainter sources from the uv-data. They are also used to
correct the residual uv-data as part of the imaging progress (A-projection).
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Figure 10: In order to verify the DG method, a controlled experiment was done,
using the �QMC2� �eld which has 20 calibration beacons and a brightest source
of 200 mJy (100 times fainter than 3c147 in �g 9). Deliberate (but secret)
pointing errors were introduced for a number of WSRT stations. Here are the
Di�erential Gains (amplitudes only) for the 14 WSRT stations, for the 20 cal-
ibration beacons. Note that the source names have a 3-digit number. The �rst
two indicate the azimuthal position, while the third indicates the distance from
the �eld centre. The plots have many fascinating details, which will not be dis-
cussed here. They have been included here for comparison with �g 11. Su�ce it
to say that, with the help of these DGs, all 20 beacons were cleanly subtracted.
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Figure 11: Rather than solving for Di�erential Gains in the direction of calibra-
tion beacons in the �eld (see �gs 9 and 10), it is also possible to solve directly for
the parameters of some mathematical model of the WSRT station beams. This
is where it gets interesting. In this case, the model was a circularly symmetric
cos3(r) voltage beam, with parameters ∆li(t) and ∆mi(t) representing station
pointing errors (in milli-degrees). As before, the integration time was 30 min,
and the error bars correspond to the stddev over the 8 spectral windows (i.e.
not the noise!). The deliberate constant pointing errors of stations RT2, RT6,
RT8 are clearly detected, as is the cos(HA(t)) pointing error of RTB. Note that
the solutions are less �noisy� than the DG solutions in �g 10, which is expected
because we are solving for fewer parameters (i.e. 2 per station, rather than 20).
But the remaining structure in the solutions suggests that the beam behaviour
cannot be explained by pointing errors alone, so more sophisticated beam models
are needed. This is con�rmed by the resulting image (not shown here), which
has more residual structure around the calibration beacons than the one in �g 10.
Scrutinizing plots like the above may o�er clues as to other e�ects that should be
taken into account. For instance, the solutions for the mispointed stations have
somewhat larger error bars, suggesting that the frequency dependence could be
modelled better. And the close similarity of the RTC and RTD solutions might
suggest that one or more calibration beacons are resolved for the longer baselines,
and asymmetrical.
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Figure 12: Closed-loop estimation of station voltage beams depends crucially
on the availability of su�cient calibration beacons in the �eld, to sample
the 2D beamshapes over some required area. The beacons are radio sources
with su�cient (apparent) brightness (' a few mJy) to allow the estimation of
instrumental gains in their speci�c direction (l,m), with reasonable S/N. In this
plot, the intrinsic �uxes of the sources in the LSM (see �g 6) are attenuated with
the station power beam, to produce apparent �uxes. These are plotted along
the station voltage beam, to indicate how well its 2D area is sampled by the
calibration beacons. Note that the horizontal axis is the radial distance to the
pointing centre.
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Figure 13: To �rst order, the availability of calibration beacons is independent
of station diameter D, since both the sensitivity and the �eld size depend on
D2, and thus cancel each other out. This is illustrated here for three di�erent
beam widths. Thus, if there are enough beacons for the WSRT @ 21cm (see
�g 9), there should be enough for any telescope with comparable Tsys, for all
wavelengths longer than 21cm. This �nding is of crucial importance for the
calibratability of SKA.
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7 Using the WSRT as a testbed

7.1 Measuring WSRT station beams

7.2 Measuring the Embrace station beam

7.3 Measuring the Digestif station beam

7.4 Measuring the Apertif station beams

8 Conclusions

Appendix: EJones modelling

Appendix: Estimating M.E. parameters

Estimating instrumental (Jones matrix) parameters

Estimating LSM source model parameters

Appendix: Designing station beamshapes
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Figure 14: A station beam actually consists of two receptor beams. In the case
of the WSRT, these are the response beams of the two perpendicular dipoles (X
and Y), in combination with the parabolic dish. Instrumental polarization is
caused by di�erences between receptor beams, and interactions between them. A
dipole placed in the focus of a perfectly round dish has a slightly elliptical voltage
beam, due to the elongated shape of the dipole. This is illustrated schematically
(and somewhat exaggerated for clarity) in the top left panel. XX and YY visi-
bilities �see� power beams (top right) that are the product of two receptor voltage
beams of di�erent stations. To �rst order, the sum of the elliptical XX and YY
beams will be circular, leading to a circularly symmetric Stokes I beam (bottom
right). But the di�erences between the XX and YY beams cause a clover-leaf of
position-dependent instrumental Stokes Q polarization (bottom left). It should
be emphasized that this is only the simplest, most readily understood case. In-
strumental Stokes U and V polarization is much less understood, even for the
the WSRT. And even the WSRT has (small) �leakages� between X and Y beams.
Other telescopes present more complex cases. For instance, due to the o�-axis
placement of the receivers, the R and L voltage beams of a VLA station are less
circular, and not co-located (beam squint). Moreover, due to the Alt/Az mount,
the entire asymmetric pattern rotates on the sky during the observations. LO-
FAR will obviously be much more complicated still. However, the good news
is that all this behaviour can be modelled perfectly by means of a 2x2 complex
EJones matrix, as part of the Measurement Equation. And thanks to the DG
method, instrumental polarization can now be measured during the observations,
using polarized and un-polarirized calibration beacons.19



Figure 15: The picture shows the variation of the four EJones matrix elements as
a function of time, for the case where the beam rotates on the sky (i.e. for an alt-
az mount or an aperture array). Note that the beamshapes are complex functions,
but interferometer phases cancel in the case of identical station beams. Obviously
the magnitude of the variation depends on the source position (l,m) in the beam,
and on the asymmetry of the beam w.r.t. the pointing centre. For instance, it
will be greater for the VLA, with its �beam squint� caused by its o�-axis receivers.
And worst of all for aperture arrays like LOFAR stations, whose rotating beams
are elongated by projection e�ects at low elevations. The same projection e�ects
also cause much more complicated instrumental polarization. The time variation
of the beamshape patterns is minimized if the beam is stationary on the sky, as
is the case with equatorial mounts (e.g. WSRT) or by means of mechanical
counter-rotation (ASKAP). This greatly simpli�es calibration, and should lead
to better results with (much) less processing.
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Figure 16: Station beamshapes have a strong frequency dependence. The largest
e�ect is geometric, i.e. the beam width is determined by the station diameter
divided by the wavelength. But often there are also other, less predictable e�ects.
As an example, the plot shows the infamous 17 MHz ripple across the band
of the WSRT, ostensibly caused by standing waves between the focus box and
the dish apex (the e�ect seems to be much smaller for the Apertif frontends,
since these hardly re�ect the signal). For LOFAR, the electronic beamforming,
with its mutual coupling and ground-plane e�ects, causes frequency dependencies
that are not yet fully understood (and may not be easily predictable, or even
repeatable). A worrying aspect is that such e�ects are not very �smooth�, so
their modelling will require more parameters. Of the four dimensional variables
(l,m,f,t), frequency dependence will probably be the least smooth, and will thus
be the most di�cult (and expensive) to calibrate.
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Figure 17: In order to measure station beamshapes with the help of calibration
beacons in the �eld, parametrized beamshape models are required. The parameter
values are then estimated by comparing the predicted values with the measured
ones at the position of the beacon sources. Depending on the type of station,
and the required accuracy, beamshape models may range from simple gausssians
to highly irregular shapes. They must be developed gradually. However, it is
possible to lay down some ground rules. Firstly , four separate mathematical
expressions are needed, for the 2 × 2 elements of each station EJones matrix,
which represents the voltage beam. Obviously, these four expressions may share
some parameters. Secondly , beamshapes should be de�ned in a sky coordinate
system, e.g. (RA,DEC) or (l,m). This makes it much easier to relate it to the
positions of calibrator beacons. Moreover, if (l,m) is used, this avoids complica-
tions associated with the zenith, or the celestial pole. Thirdly, all solvable pa-
rameters should be functions of frequency and time, e.g. low-order polynomials.
This takes care of unpredictable beamshape variations during the observations.
Fourthly, the mathematical expressions should have the general form of a series
of suitable base-functions, whose coe�cients serve as parameters. This makes
it possible to trade o� processing cost against accuracy by choosing the number
of terms. Obviously, the base-functions should be chosen in such a way that the
number of solvable parameters is minimized. An attractive choice is shapelets,
which are very versatile and easily implemented, and are eminently suited to the
kind of shapes that station beams tend to have.22


