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Calibration

For K discrete sources, we observe

y =
K∑

i=1

si(θ) + n, n ∼ N (0,Π)

Maximum Likelihood (ML) estimate, under White Gaussian Noise

θ̂ = arg min
θ

φ(θ) = arg min
θ

‖y −
K∑

i=1

si(θ)‖
2

Traditional calibration: using Levenberg-Marquardt (LM) algorithm

θk+1 = θk − (∇θ∇
T

θφ(θ) + λH)−1
∇θφ(θ)|θk

where H
△
= diag(∇θ∇

T

θφ(θ)).
Much faster methods are available [Kazemi et al., 2012]
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EM: Formal Description

[Dempster, Laird, Rubin, 77]

y =
K∑

i=1

si(θ) + n

� ML estimate: θ̂ML = arg max
θ

log f(y|θ)

� Auxiliary random variable x: hidden data, y = F(x)

� The E Step: compute conditional expectation
Q(θ|θk) = E{log f(x|θ)|y, θk}

� The M Step: Maximize θk+1 = arg max
θ

Q(θ|θk)

� Can be simplified for exponential family distributions.

� Can be even more simplified for Gaussian distributions.
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Classic EM

� Auxiliary random variables

x̃i = si(θi) + ñi

� Noise (Gaussian)

n =

K∑

i=1

ñi, E{ñiñ
H
j } = βiδijΠ,

K∑

i=1

βi = 1

� E Step: (conditional mean)

̂̃xi = si(θ
k
i ) + βi(y −

K∑

l=1

sl(θ
k
l ))

� M Step: (LM iteration)

θk+1

i = θk
i − (∇θi

∇
T

θi

φi(θi) + λHi)
−1

∇θi

φi(θi)|θk

i
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SAGE

SAGE: Space Alternating Generalized Expectation Maximization [Fessler
and Hero, 94] [Kazemi et al., 2011]

� Auxiliary random variable (all noise associated)

xS = si(θi) + n

� E Step: (conditional mean)

x̂S = si(θ
k
i ) + (y −

K∑

l=1

sl(θ
k
l )) = y −

K∑

l=1,l 6=i

sl(θ
k
l )

� M Step: (LM iteration)

θk+1

i = θk
i − (∇θi

∇
T

θi

φi(θi) + λHi)
−1

∇θi

φi(θi)|θk

i

� Caveat: f(y,xS|θ) = f(y|xS, θS̃)f(x
S |θ)

� Faster convergence than the classic EM.
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SAGECal

� The fastest multisource calibration program (50× to 100× faster than
BBS or meqtrees).

� Complexity: directions × stations2.

� Very modest memory usage: (1 million data points, 60 000 parameters,
< 6 GB RAM).

� Highly parallelized and vectorized. Uses GPU acceleration when
available (> 8 speedup).

� Pure C code with only standard libraries used. Not linked against
casacore etc.

� Data I/O done using binary files. Easy conversion to binary format
using pyrap.

� Supports all source models: points, Gaussians, disks, rings, (widefield)
shapelets (prolate spheroidal wave functions).
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LOFAR NCP Window

Core baselines < 3 km, 130 MHz, 62×62 sq. deg. image, noise 0.7 mJy

SAM 2012 – p. 7



Challenges in LOFAR Calibration

� A Few Complex sources: Use points, shapelets, Prolate Spheroidal
Wave Functions,...

� Many more point/double/triple... sources: Careful sky model
construction.

� How many directions in the sky to calibrate: Use source clustering to
reduce the number of directions. [Kazemi et al., 2011]

� How to calibrate along multiple directions in an accurate and an
efficient way: Use SAGECal.

� What is the limit in number of directions? [Kazemi et al., 2012]

� Current noise limits for LOFAR NCP: I 100 µJy (3 nights), Polarization
110 µJy (1 night).
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Complex Sources

Cassiopeia A, 120 MHz NCP, 130 MHz, 1×1 sq. deg.
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Before SAGECal

Cas A, 30 deg. away
Center
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After SAGECal

Cas A, 30 deg. away
Center
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Ionosphere/Beam

(left) original, (middle) normal (right) hybrid SAGECal
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GPU Acceleration
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Compute time with no of directions (Tesla M1060)
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Outlier Sources

outlier sources outside the 10deg FOV
SAM 2012 – p. 14



Excess Noise
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Outlier Sources

Central Pixels

outlier source positions X (most of them below noise) and pixels +
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Excess Noise
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Need to subtract/supress all outlier sources to reduce excess noise.
The wider the beam⇒ the narrower freq. resolution
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Beam Estimation

[IEEE SAM 2012]
Ideally

Cpqmγpmγ⋆
qm = JpmC̃pqmJH

qm

where γpm = eTp Bbm gives the beam model.

Sky coherency (intrinsic) Cpqm (model) C̃pqm (∈ C
2×2).

Calibration solutions are Jpm,Jqm (∈ C
2×2) and have a unitary ambiguity.

Beam model (unknown) is B (∈ C
N×D).

Minimize the cost function

f(B) =
∑

p,q,m

‖Cpqmγpmγ⋆
qm − JpmC̃pqmJH

qm‖2

to estimate B. Ill conditioned.
Enforce power constraint

trace(BHB) = α

which makes B restricted to a manifold.
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Riemannian Optimization

We use two algorithms

� Riemannian Steepest Descent [Fiori S. (2011)], on the manifold
trace(BHB) = α.

� Riemannian Broyden Fletcher Goldfarb Shanno [Qi C., Gallivan K. and
Absil P.A., (2010)] on the 2ND unit sphere (Stiefel).

Hybrid use of RSD and RBFGS gives faster convergence. The only
requirements are the cost function f(B) and its gradient ∂f

∂B
.
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Beam Model

real imaginary
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Unconstrained Estimate

real imaginary
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Constrained Estimate

real imaginary
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Conclusions

� LOFAR calibration to reach the noise limit requires subtraction of
several thousand sources along several hundred directions.

� SAGECal does this fast and accurately.

� Many more astronomers are using SAGECal to process LOFAR
HBA/LBA data (and get good results).

� Current LOFAR limits ≈ 1 million in dynamic range [Labropoulus] and
100 µJy in I and polarization.

� Sources outside the FOV play a role almost as important as sources
inside the FOV in reaching the noise limit (for any interferometer).

� SKA designers need to keep this in mind.
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