OSKAR-2: Simulating data from the SKA

AACal 2012, Amsterdam, 13th July 2012

Fred Dulwich, Ben Mort, Stef Salvini
Overview

- **OSKAR-2**: Interferometer and beamforming simulator package.
- Intended for simulations of SKA₁ aperture arrays.
- Based on full-sky Measurement Equation formalism.
 - “Brute force,” 3D, direct evaluation approach.
- Takes advantage of large computational power offered by modern GPUs via NVIDIA’s CUDA API.
 - Scale up to large aperture array interferometer simulation.
The ME as implemented by OSKAR-2

\[\langle V_{p,q} \rangle = \sum_{s} K_{p,s} E_{p,s} G_{p,s} P_{p,s} R_{p,s} \langle B_s \rangle R_{q,s}^H P_{q,s}^H G_{q,s}^H E_{q,s}^H K_{q,s}^H \]

- Baseline \(p, q \) for all visible sources, \(s \).
- \(B \) – Source brightness.
- \(R \) – Parallactic angle rotation.
- \(P \) – Propagation term.
- \(G \) – Antenna element field pattern.
- \(E \) – Station beam.
- \(K \) – Interferometer phase.
- \(V \) – Complex visibility.

... and any others required!
Measurement Equation

- **Interferometer phase**
- **Propagation term**
- **Parallactic angle rotation**
- **Antenna element field pattern and station beam response**
New (since December 2011)

- Usability improvements:
 - Simple GUI and scriptable simulation applications.
- Extended sources.
- Element pattern evaluation now implemented on GPU.
- (Ideal) dipole rotation allowed within station.
- Can use FITS images directly as sky models.
- Addition of visibility noise (currently in testing).
- Planned:
 - Ionospheric model.
 - Multiple antenna types per station.
 - Hierarchical stations.
Sky Model

- Equatorial point source model.
- Extended objects modelled as large collections of pixels.
- “Large” could easily be $\sim 10^6$ sources across whole sky!

$$\langle B \rangle = \begin{bmatrix} I + Q & U + iV \\ U - iV & I - Q \end{bmatrix}$$
Antenna Field Pattern (G-matrix)

- The average embedded element pattern for antennas within a station
- Antenna data given in tabular form:
 - Fit bicubic B-splines to nodal points to construct surface with continuous derivatives.
 - Evaluate spline coefficients to get antenna response at each source position.

\[
G = \begin{bmatrix}
 g^X_{\theta} & g^X_{\phi} \\
 g^Y_{\theta} & g^Y_{\phi}
\end{bmatrix}
\]
• OSKAR-2 evaluates every station beam (i.e. for every aperture array) at every source position.
• This incorporates all effects at the station level, e.g. phase and gain errors, different beamforming schemes, antenna patterns...
• GPUs make this feasible!
Station Phases (K-matrix)

- K-matrix effectively “phases-up” the array of stations.
- Compute phase of each source s at every station a.
 - Determine station (u,v,w) coordinates by rotating (x,y,z) onto a plane perpendicular to direction of phase centre.

$$K_{s,i} = \exp \left\{ -2\pi ik \left[u_i \xi_s + v_i \eta_s + w_i \left(\sqrt{1 - \xi_s^2 - \eta_s^2} - 1 \right) \right] \right\}$$
“Correlator”

- Multiplies Jones matrices with the source brightness to obtain a complex visibility per source and per baseline.

\[V_{i,j} = \sum_s \mathbf{J}_{s,i} \mathbf{B}_s \mathbf{J}_{s,j}^* \]

- Time-average smearing: each visibility point can be averaged over time.
 - \(K \) is recomputed to include motion of baseline during integration period.
 - \(E \) is allowed to vary throughout the integration at a slower rate than \(K \).

- Bandwidth smearing: multiply each visibility by \(f_{s,ij} \) before collapsing the source dimension.

\[f_{s,i,j} = \frac{\sin(\pi D_{i,j} \xi_s \Delta \nu / c)}{\pi D_{i,j} \xi_s \Delta \nu / c} \]
The OSKAR Package

- OSKAR-2 consists of a library and some simulation applications:
 - oskar_sim_interferometer
 - oskar_sim_beam_pattern
 - oskar_imager
 - oskar (simple GUI to edit settings files)
 - ... and some command-line utilities to allow easy scripting of simulations.

- All computationally intensive functions carried out using NVIDIA CUDA.

- Can be used with multiple GPUs for very large simulations.
- Output can be written to measurement set.
OSKAR-2 Settings

- Plain-text settings file (INI format) can be edited by hand.
 - Consists of key, value pairs.
- All parameters can be set using simple GUI.
 - Can easily hide settings not of interest.
 - Highlights required parameters, and those not at default values.
Sky Model

- Text files contain columns describing, for each source:
 - Apparent Right Ascension
 - Apparent Declination
 - Stokes I
 - Stokes Q *
 - Stokes U *
 - Stokes V *
 - Reference Frequency *
 - Spectral Index *
 - Gaussian FWHM (major axis) *
 - Gaussian FWHM (minor axis) *
 - Gaussian Position Angle *

* optional
Telescope Model

• Directory structure containing text files describing layout at each level of the telescope:
 • my_telescope_model/
 – station001/
 • config.txt [describes configuration of station 1]
 – station002/
 • config.txt [describes configuration of station 2]
 – station003/
 • config.txt [describes configuration of station 3]
 – … [other station directories]
 – config.txt [describes layout of stations in interferometer]

• Each station directory may also contain (different) embedded element pattern data files.
Telescope & Station Configuration

• Text files (‘config.txt’) contain columns describing:
 – x (East) coordinate.
 – y (North) coordinate.
 – z (up) coordinate. *

• Station files may also contain:
 – Element x position error. *
 – Element y position error. *
 – Element z position error. *
 – Systematic gain factor. *
 – Time-variable gain factor standard deviation. *
 – Phase offset. *
 – Time-variable gain standard deviation. *
 – Element complex multiplicative beamforming weight. *
 – X dipole axis azimuth angle. *
 – Y dipole axis azimuth angle. *

* optional
Some Example Simulations
Some Example Simulations

• Telescope model consisting of:
 – 50 stations
 – in a log-spiral, 3-arm configuration
 – with maximum baseline 100 km,
 – each a 180-m diameter aperture array,
 – containing 10000 randomly placed antennas.

• Observation parameters:
 – Observing at 100 MHz,
 – for 8 hours on 1 Jan 2000,
 – for a telescope at latitude 50 degrees (0 degrees longitude),
 – (720 visibility dumps 40 seconds apart),
 – updating fringe every 0.2 seconds for time-average smearing,
 – and bandwidth smearing for 150 kHz channel.
1. Canonical sky model (17 3C sources), looking at a 100 mJy source a long way from any other.

2. Canonical sky model (17 3C sources), looking at a 100 mJy source with Cas A in the first sidelobe.

3. Fictitious sky model containing some polarised and extended sources.
Layouts

50 stations (max baseline ~ 100 km).

10000 elements, 180 m diameter.
Sky Model

17 FITS images of “A-team” sources. (VLA models, from NRAO.)

Total 43686 pixels containing detected (non-noisy) flux.
Example 1: 100 mJy source in quiet part of sky

Time synthesis

Time snapshots
Example 2: 100 mJy source with Cas A in first sidelobe
Example 2: 100 mJy source with Cas A in first sidelobe (beam)
Example 2: 100 mJy source with Cas A in first sidelobe (Stokes I)

Time synthesis

Time snapshots
Example 3: Fictitious sky model (Stokes I)

Time synthesis
Example 3: Beam patterns
Example 3: Images
Next Steps

• New features (on-going work)
 – Ionosphere model
 – Element patterns per antenna type
 – Hierarchical station model
 – Simulations using dishes
 – Integration with MeqTrees

• Using OSKAR
 – SKA AA phase 1 design studies (single, dual band?)
 – Simulating existing instruments → LOFAR
 – Open questions
 • Choice of configurations for comparison?
 • Ability to calibrate and image simulated data?
 • Performance metrics?

• OSKAR release
 – Currently in pre-release (2.0.3-beta)
 • Source code only
 • Documentation and examples available
 – Suggestions? Contact Us!

oskar@oerc.ox.ac.uk