

Aperture Arrays for the SKA Arnold van Ardenne AAVP-Coordinator ardenne@astron.nl AST(RON

Courtesy: Lofar & SKADS/AAVP teams

Paradigm shifts:Huge flexibility by electronic controlMulti- vs. Single sky pixel processing

SKA₂ Key Science Drivers

ORIGINS > Neutral hydrogen in the universe from the Epoch of Re-ionisation to now

When did the first stars and galaxies form? How did galaxies evolve? Dark Energy, Dark Matter

>Astro-biology

FUNDAMENTAL FORCES > Pulsars, General Relativity & gravitational waves

Origin & evolution of cosmic magnetism

TRANSIENTS (NEW PHENOMENA)

Science with the Square Kilometre Array Editors: Christopher Carilli, Steve Rawlings

Science with the Square Kilometre Array (2004, eds. C. Carilli & S. Rawlings, New Astron. Rev., **48**)

SKA AA System Design 2005-2012

SOUARE KILOMETRE ARRAY

- (Early R&D 1995- 2004)
- SKADS EC funded SKA design Study 2005-2009 SKADS

- EC FP6 funding 2005-2009 (€10.4M) plus additional for Marie Curie
- All material incl. White Paper available through website <u>www.skads-eu.com</u>

AA's in SKA phased planning

S	KA ₁				
	Freq. Range	Collector	Sensitivity	Number / size	Distribution
	70 MHz to 450 MHz	AA-low Sparse AA	1,000 m²/K at 100 MHz	50 array stations, Diameter 180 m	70% within 5 km dia.,
	300 MHz to 3 GHz	Dishes with single pixel feed	1,000 m²/K at 1.4 GHz	250 dishes Diameter 15 m	30 % along 3 spiral arms out to 100 km radius

SKA ₂										
	Freq. Range	Collector	Sensitivity	Number / size	Distribution					
	70 MHz to 450 MHz	AA-low Sparse AA	4,000 m²/K at 100 MHz	250 array stations, Diameter 180 m	66% within 5 km dia., 34% along 5 spiral arms out to 180 km radius					
	400 MHz to 1.45 GHz	AA-mid Dense AA	10,000 m²/K at 800 MHz	250 array stations, Diameter 56 m						
	300/1000 MHz to 10 GHz	Dishes with single pixel feed + PAF	10,000 m²/K at 1.4 GHz	2000 – 3000 dishes Diameter 15 m	50% within 5 km dia, 30% 5km - 180 km 20% 180 km-3,000 km.					

Exploring the Universe with the world's largest radio telescope

AA-workshop Dwingeloo 12-16th December From AAVP toward Preconstruction Phase AvA

Principal AAVP Deliverables in time

AA-low

AA-mid

Technol. demonstrator & Costed sub-system design AAVS1/2013

single array performance demonstrator

multi-array interferometer performance demonstrator AAVS2

SKA₁ capable costed design, Station level size (~2000sqm)

SKA₂ technology roadmap & costed system design

SKA₁ full pre-production prototype array

AA system AA-lo and AA-mid CoDR

SKA₁ manufacturing data package

Courtesy: Gijs Schoonderbeek

2015

7304 components /25798 connections

2013

2015

>2016

2011

2014

4TMAC's/ 400W

AAVS1

AAVP Programmatics 2011

- Appointed Project Manager, Verification Scientist
 - Derek McKay-Bukowski (PM)& Ilse van Bemmel (VSc)
 - Funded through PrepSKA-SPDO
- SPDO AADomain specialist
 - Andre Gunst (50%)
- Passed AA-CoDR 19-20 April/23-24 November
- Endorsed: Workshop ICT in R.A. workshop in Aveiro(Pt) 24-25 May
- AA-Low workshop Perth 6-9th September @ ICRAR
 Main purpose: Preparing for Preliminary Design AA-Low Reg. Review in March '12
- Now: AA-workshop Dwingeloo 12-16th December
 - From AAVP toward Preconstruction Phase
- Collaboration toward PEP phase

AA's in SKA Widefield System scenario

Array choice vs. Sky noise

SOUARE KILOMETRE ABRAY

- Below ~300 MHz
 - $T_{sky}\propto\lambda^{2.6}$ hence **sparse** arrays are needed (A_{e}\propto\lambda^{2}); A_{eff}/T_{sys} not much varying
 - Receiver temperature is not very critical
 - Frequency bandwidth determined by individual element
- Above ~300 MHz
 - T_{sky} ~ constant, receiver temperature is critical
 - **Dense** arrays intrinsically wideband (~3.5:1, $d_{elem}/\lambda \sim 1.8-6$), $A_e \propto constant$

AA input from ongoing work e.g. Int. Murchison Widefield Array (& LWA)

Key players

- AUS/ICRAR, CSIRO, Swinb. e.o.
- US/MIT-Hayst,, e.o.
 - India/RRI
- 80-320MHz, BI ~1.5km/32T
- Extension planned toward 128 tiles

Centaurus A

Courtesy: Peter Hall, Steve Tingay, Frank Briggs

Possibly also from PAPER (S.A.)

- Solely focused on EOR (120-180MHz)
 2010: 32 stations in Karoo, SA
- Established working array from scratch in < 1 yr, with invaluable help from SA (MeerKAT project, Durbin Univ.)
 Berkeley, NRAO, Penn, South Africa

Courtesy: Chris Carilli

Durbin University of Technology

Flexibility, beams and computations

Courtesy: Jan David Mol, Jason Hessels, John Romein AAVP

Exploring the Universe with the world's largest radio telescope

AA- low design issues

• Dealing with strong frequency dependent skynoise vs receiver noise

• Antenna design e.g dual vs single band

Courtesy: AAVP teams, Jan Geralt bij de Vaate

• Optimal frequency dependent Configuration (e.g. "snowflake")

- Dense vs sparse vs science requirements Exploring the Universe with the world's largest radio telescope
 - Connected to configuration, filling factor, calibratibility, e.m. design, etc. See above.

AA- low design issues (2)

Antenna design e.g dual vs single band

BUARE KILOMETRE ARRAY

- Higher gain antennas means higher Aeff at expense of sky coverage
 - Widest sky-coverage (+/- 80deg) with dipole (gain ~<3dB), LPDA ~7dB (+/-30deg), 0dB(+/-45deg)
 - Alternative 1: 4 dipoles becoming sparse at lowest freq. with single infra trench
 - Alternative 2: LPDA with 2 positional (mechanical) system

- Filling factor @station level, coverage, calibration
- Assume: Antenna elements are self powered i.e. Only optics to central station Exploring the Universe with the world's largest radio telescope

Calibration and Imaging

- Strong Calibration, Imaging and Commissioning team
 - Strong infusion from LOFAR
 - Task lead by Keith Grainge (UCam). Core: Keith, Stefan Wijnholds (SP, algorithms, station calib), Oleg Smirnov (ME, HDR imaging), Ronald Nijboer (algorithms, math.), Tobia Carozzi (widefield polarimetric Imaging), Fred Dullich(beam sim.)
 - Associated: Jan Noordam, Parisa Noorishad, Paul Alexander, Rosie Bolton
- Complex multi-issue task;
 - Configuration, computational efficiencies e.g. modelbased station calibration (N cubed vs NxNlogN) vs other approaches
 - Multiple sources (changing over frequency), propagation effects, computing resources (large data rates (Tbts, Ebps), real-time calibration)
- Interacts with SKA-Calim and co-workers
 - US, Aus, Europe
- Strategy; hierarchy:
 - Instrument characterization
 - System health monitoring / system diagnosis
 - Station- & Array Calibration

Several Presentations

Exploring

DFT vs. LS imaging (1)

- S.J. Wijnholds, URSI Benelux Forum, Jun. 2009
- S.J. Wijnholds, Ph.D. thesis, Mar. 2010

AA-mid Array

Exploring the Universe with the world's largest radio telescope

AA-mid (SKADS) resolved issues

- E.M. modelling large arrays
- Math. Phys. Modelling of antenna-circuitry
 - vs scan-angle and system noise
- LNA noise achievable
- Bandwidth >3.5:1 e.g. 400-1,4GHz
- <u>Principles</u> demonstrated to work for R.A.
- Prototype Substation (Embrace)Constructed

SKAL

Next: AA-Mid development to

- EMBRACE as teststations
- Full Dual polarisation
- Focus on frontend: RF electronics, Antennas & Mechanics
- Low cost: Improved manufacturability with high level of integration
- Low power: ~2.5x lower i.e. <40W/sqm collecting area
- Production proto expected 2013
- Build station on SKA site in 2013-2014

ORA; a Planar structure approach

 16×16 Finite Array Measured

• The rings are attached to the surface of the expanded polystyrene foam (EPS) with a defined separation between two layers and the groundplane

Exploring the Universe with the world's largest radio telescope

Electrical Power Consumption

• AA-mid

- Presented in Analogy-report is 113 W/m² for a single channel
- Reference document AA-mid power: a single channel 39 W/m².
- There is a clear difference in the values, can be explained by
 - 1. EMBRACE frontend is designed for a high RFI environment, LNAs are driven by relative high currents.
 - 2. Difference of integration of the station processing
 - 3. Changes in sub-systems design
 - 4. Industry actually focus to power reduction of electronics.
 - 5. Based on 2007-2009 technology.
- Projecting towards low RFI environment and 2019 timeframe: significant reduction of the presented power values by 5 previous mentioned topics.
- As with AA-low; self (i.e. solar) powered stations possible?

After PrepSKA - AAVP

- Toward next major SKA milestone: SRR to be done in 1st PEP Phase
- Stream: SKA system design, Architectural Design, Costed
 - SPO task, in preparation
- Stream: prepare SOW
 - Inventory of outstanding issues to be resolved for SRR
 - Roadmapping, purpose increase maturity (sub)systems
 - Technologies into components into systems form (e.g. AA)concept
 - IP-policy required (soon)
 - Document control system to be installed asap (i..e cannot continu to work from SKA memos)
- Need: Keep dynamics in this "intermediate" phase (1 yr?)
- Work to be done through focussed Aperture Array Collaboration Group ("AACG") or AA Design Consortium ("AADC")
 - In line with present activities: Coordinated through ASTRON

Summary

- Science potential: Wide field technologies (AA's and PAF's) for the SKA planned
 - AA techniques are also widefrequency band
 - Lessons from demonstrators and pathfinders incorporated toward next phase
- AA activities part of PEP Phase i.e. preparing for next major SKA milestone