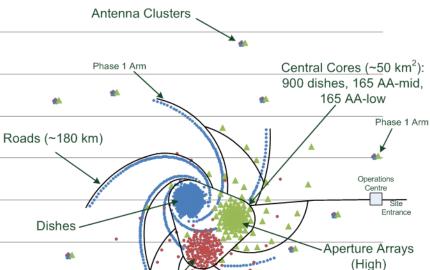


The SKA Pre-Construction Phase P. Dewdney

AAVP Workshop Dwingeloo Dec 12-15, 2011

Why System Engineering for the SKA?

- System Complexity
 - Several technologies
 - Large physical scale
 - Remote operations in harsh environment
- Long build time
 - Two phases.
 - Probably a ~decade.
- International participation
 - Many contributing parties with their own agendas.
 - Technology choices
 - Fairness of treatment.
- For the sponsors
 - Minimizing cost
 - Recognition of the importance of a total life cycle approach to the execution of the project
 - Assurance of getting what is intended.



Central SKA Site – massive physical system

- SKA2 is ~10 x the collecting area of SKA1.
- Density increase of antennas is even larger in the central site.

25 km

10000

Central SKA2 Site

25000

20000

15000

10000

5000

-5000

-10000

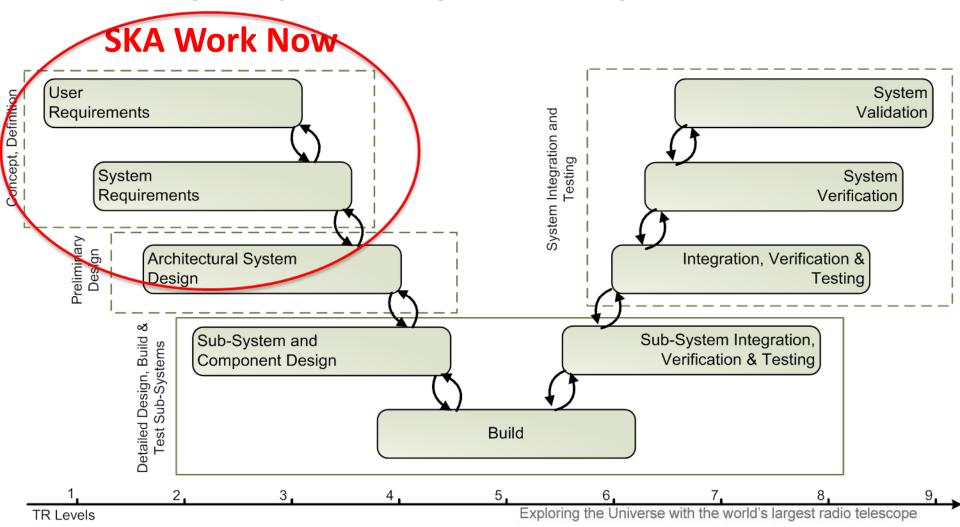
-15000

-20000

Dishes

Aperture Arrays (Low)

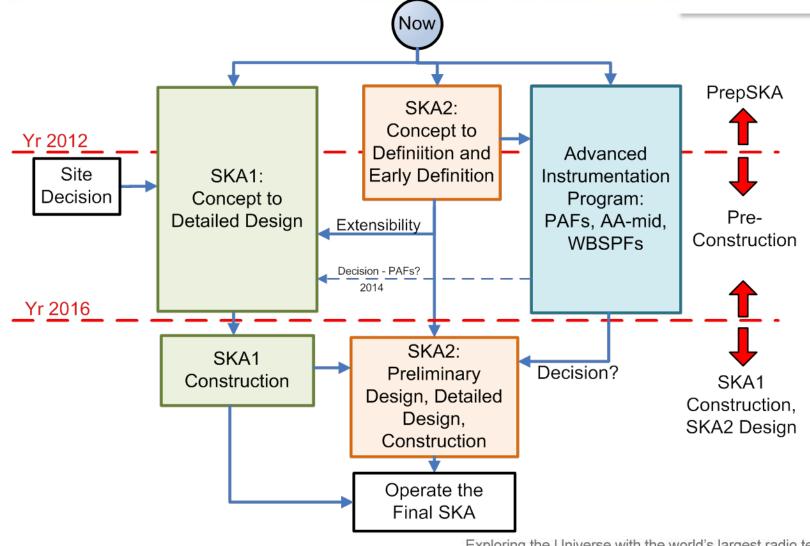
-10000


-15000

Phase 1 Arm

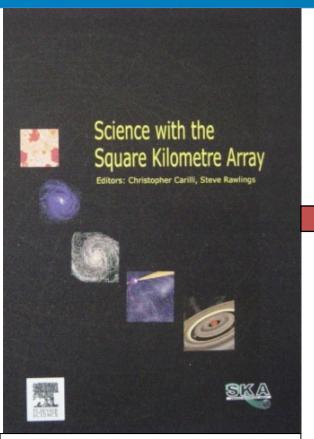
Large Project 'V' Diagram showing SKA Phases

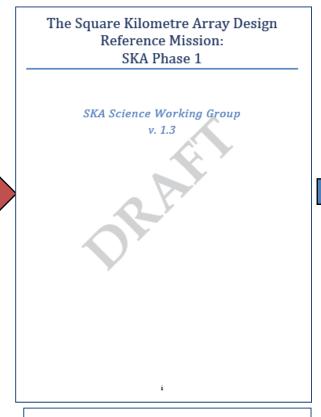
Large Project 'V' Diagram showing SKA Phases


SKA1 => SKA2

- SKA1 has been broadly defined (science & technology).
 - "Step" along the way to constructing SKA2.
- However, the full technology complement for SKA2 is not yet well defined
 - a flexible plan for SKA1 => SKA2 is needed
 - introduce a program to mature the technologies that will enhance the science output of SKA2.
 - Advanced Instrumentation Program (AIP)
- The AIP will continue to develop innovative technology for:
 - phased array feeds on the dishes (PAFs),
 - Mid-frequency Aperture Arrays (AA-mid),
 - Ultra-wideband single pixel feeds on the dishes (WBSPFs).
- Development of AIP technologies
 - parallel with design and roll-out of SKA1 until early 2016
 - decision made on usage in SKA2.
- Extensibility document

Phased Approach to Technical Development




Exploring the Universe with the world's largest radio telescope

Science Case => Design Reference Mission => Science Requirements

Science Case
Lays out overarching goals,
full suite of science

SKA1
Design Reference
Mission.

Requirement #1 Requirement #2 Requirement #3 Requirement #4 Requirement #5 Requirement #6 Requirement #7 Requirement #8 Requirement #9 Requirement #10 Requirement #11 Requirement #12 Requirement #13 Requirement #14 Requirement #15 Requirement #N

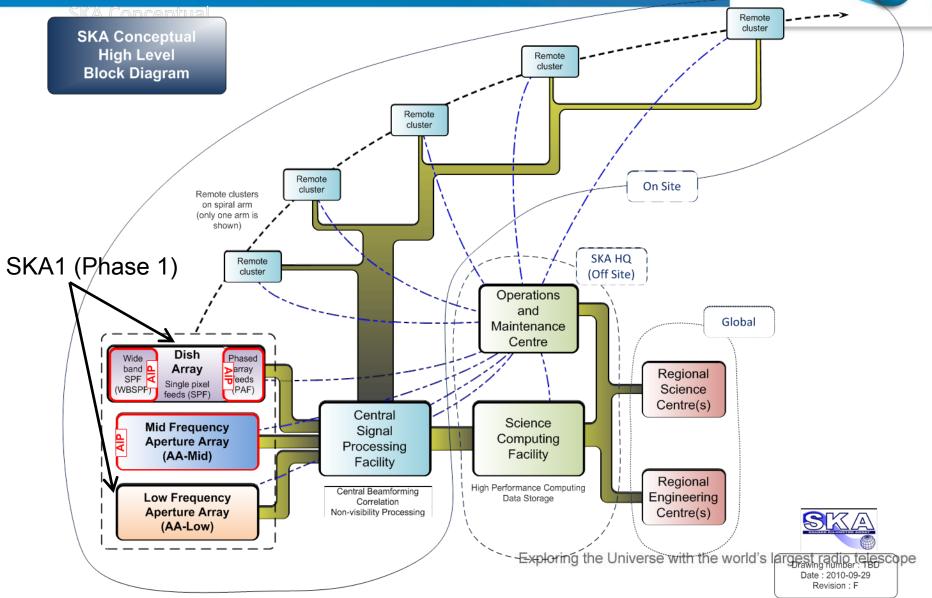
Requirements
Document
Incorporates input
from science, but

Back-project result to original science case

Major Instrumental Requirements that Determine Science Performance

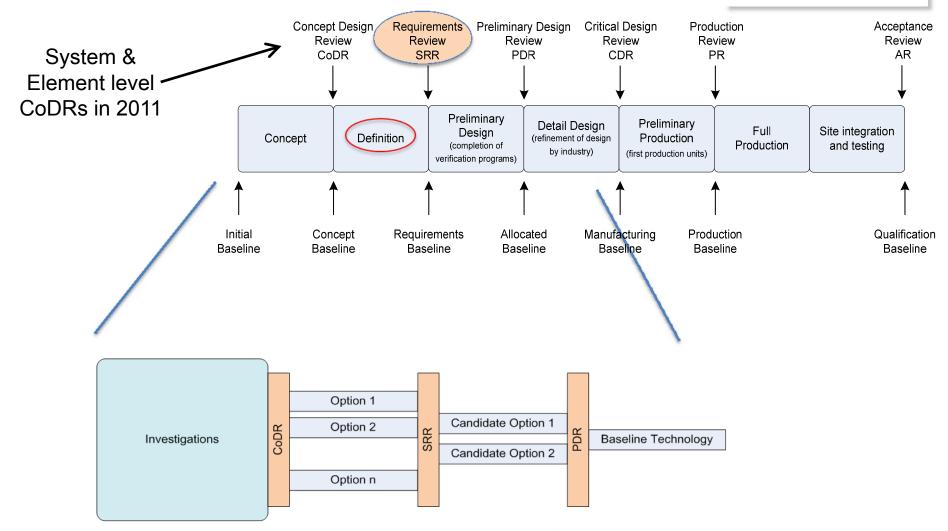
Science Requirements Instrumental Requirements

- Frequency range
- Maximum baseline
 - (determines resolution)
- Sensitivity
 - $-A_e/T_{sys}$
 - Survey Speed $[(A_e / T_{svs})^2 \Omega]$


Other Important Parameters

- Bandwidth
- Processing capability

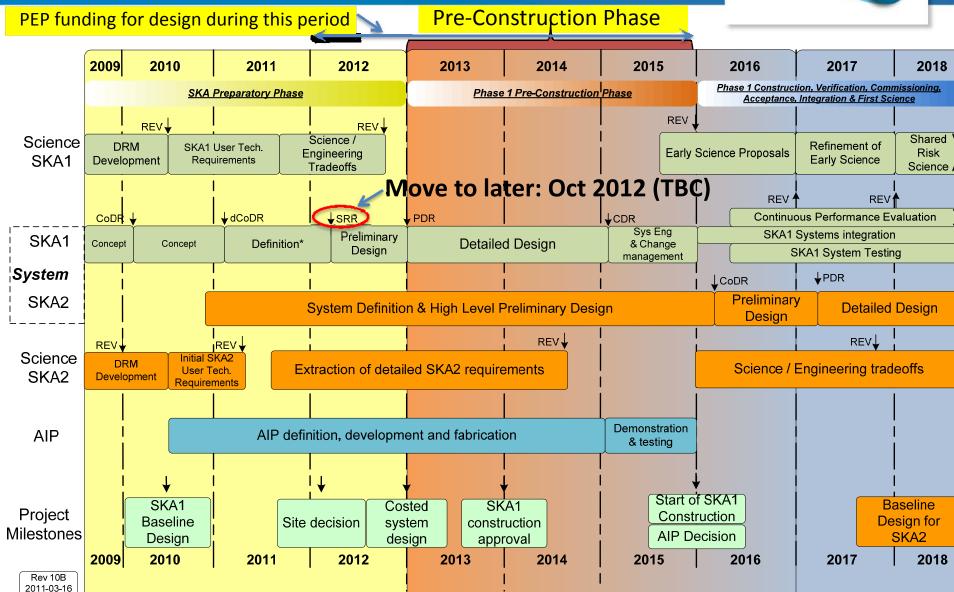
Exploring the Universe with the world's largest radio telescope


SKA System Diagram

Design Review Series

Exploring the Universe with the world's largest radio telescope

Conceptual Design Reviews in 2011



- ≥23-25 Feb System delta-CoDR on SKA₁ √
- ➤ 14-15 Apr Signal Processing ✓
- ➤ 19-20 Apr Aperture Arrays ✓
- ≥ 28-30 Jun Signal Transport & Networks ✓
- ➤ 13-15 July Dish and Dish Arrays
 √
 - > 2-3 Feb CoDR Dish Verification Antenna #1
 - > 5-7 Oct PDR Dish Verification Antenna #1
- ≥9-11 Nov Monitor & Control ✓
- ≥27-28 Nov AA-mid (delta) ✓
- >6-8 Feb Software & Computitive with the world's largest radio telescope

Context for Pre-Construction

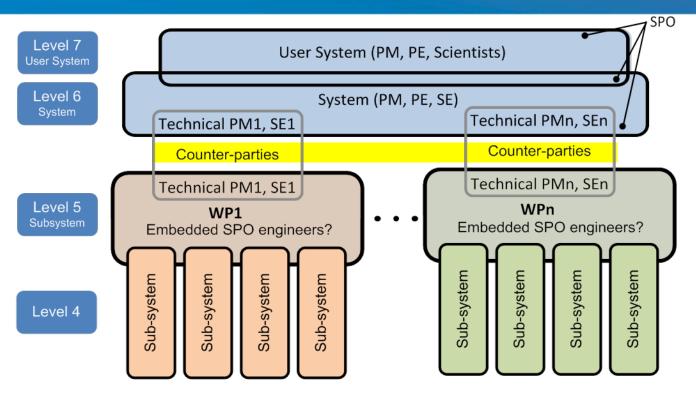
Phase

Goals of Pre-Construction Phase

Progress the SKA design to Production Readiness
 Review stage and let "contracts" for construction of
 major sub-systems, through Consortia Agreements.

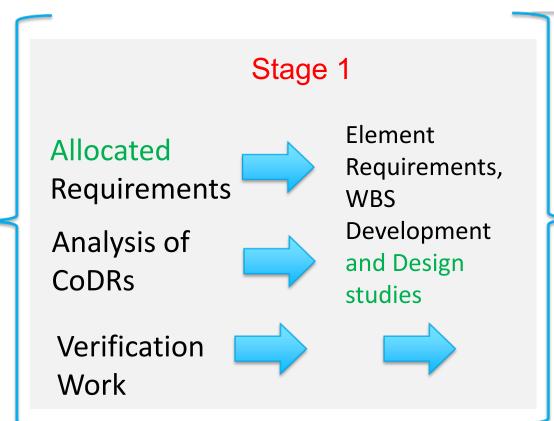
 Progress infrastructure roll-out on selected site to allow sub-systems to be deployed.

3. Mature the SKA legal entity into an organisation capable of carrying out the construction, verification, and operation of the telescope.


Roles of the SPO

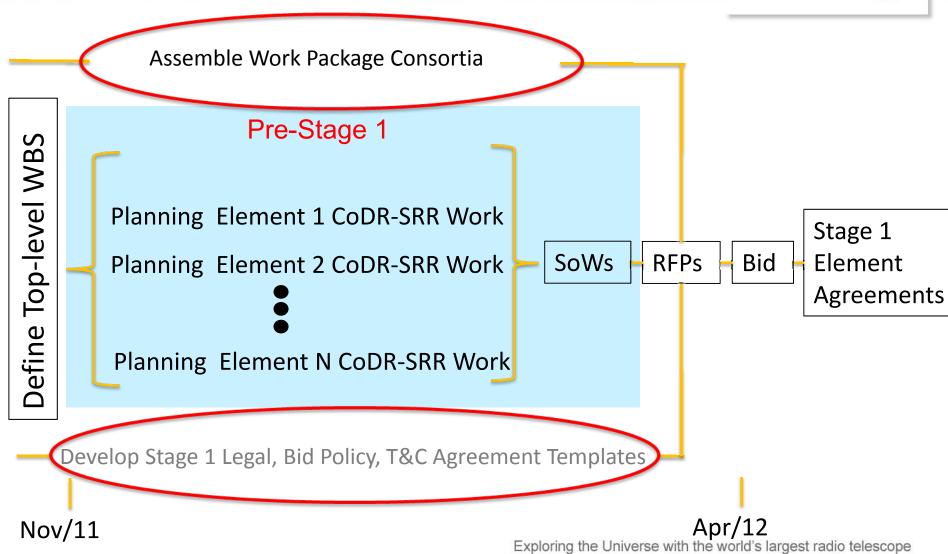
- Responsible for and have authority over:
 - Overall management and engineering of the project
 - Steering the pre-construction phase
 - Addressing science and engineering challenges
- Develops and holds the system design
 - System Engineering
- The SKA Project Director will have the authority:
 - to hire people.
 - take financial decisions.
 - to sign agreements to carry out work packages and contracts with industry.
 - terminate agreements or contracts.
 - accept deliverables.
- SPO Integrating body for both the managerial and engineering aspects.
- To achieve this, the SPO to be resourced with managers, engineers and support personnel at both system and subsystem level. Exploring the Universe with the world's largest radio telescope

SPO-WPC Relationship


- SPO (as per PEP) contains a Technical Project Mgr and a System Engineer, devoted to each of five WPCs.
- Each WPC has a direct responsible counterparty (top WPC management and principal point of contact).

WPC Element Work in 2012-3

Pre-Stage 1


Planning
CoDR => SRR
Work
(See next slide)

Element SRR

Assembling Element Level RFPs for Stage 1 Work

Overall Work Breakdown Structure (WBS)

1 SKA – Square Kilometre Array – Total system
2 SKA.TEL - Telescope
3 SKA.TEL.DSHA - Dish Array
3 SKA.TEL.LFAA - Low Frequency Aperture Array
3 SKA.TEL.SADT - Signal and Data Transport
3 SKA.TEL.CSP - Central Signal Processor
3 SKA.TEL.DP - Science Data Processor
3 SKA.TEL.MGR - Telescope Manager
3 SKA.TEL.SAT - Sync and Timing
3 SKA.TEL.PWR - Power
3 SKA.TEL.INFRA - Site and Infrastructure
3 SKA.TEL.AI - Advanced Instrumentation
4 SKA.TEL.AI.MFAA - Mid Frequency Aperture Array
4 SKA.TEL.AI.PAF - Phased Array Feed
4 SKA.TEL.AI.WBSPF - Wide Band Single Pixel Feed
2 SKA.FAC - Facilities
2 SKA.PM - Project Management
3 SKA.PM.SPO – SKA Project Office
2 SKA.SCI - Science
3 SKA.PM.PS - Project Scientist(s)
4 SKA.PM.PS.SCA - Science Analysis
2 SKA.SE – SKA System Design and System Level System Engineering
3 SKA.SE.MGT - System Engineering Management
3 SKA.SE.REQ - Observatory Requirements
3 SKA.SE.OPS - Concept of Operations
3 SKA.SE.ARC - System Architecture
3 SKA.SE.PERF - System Level Trade Studies
3 SKA.SE.SYSD – System Design
3 SKA.SE.QA – Quality Assurance
3 SKA.SE.VER – System Verification Management
3 SKA.SE.INT – System Integration Management
3 SKA.SE.DOC - Document Control and Archiving

WPCs

SPO

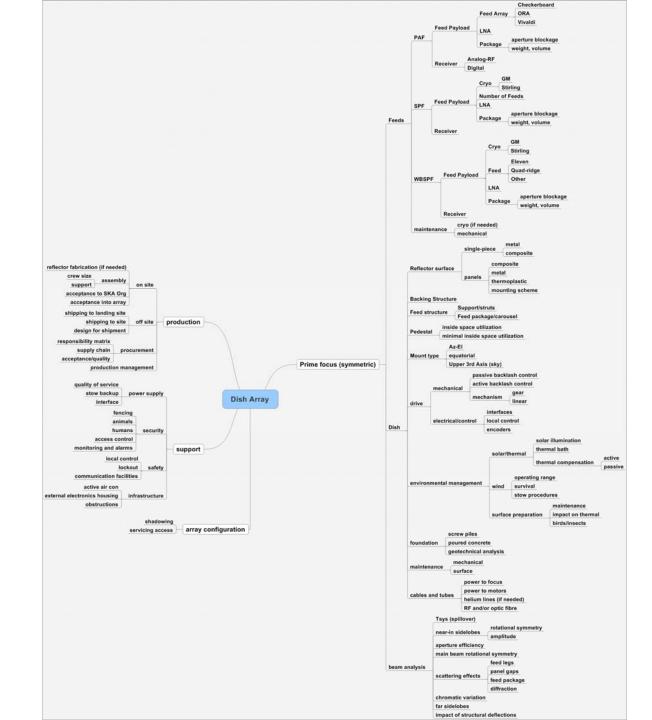
Exploring the Universe with the world's largest radio telescope

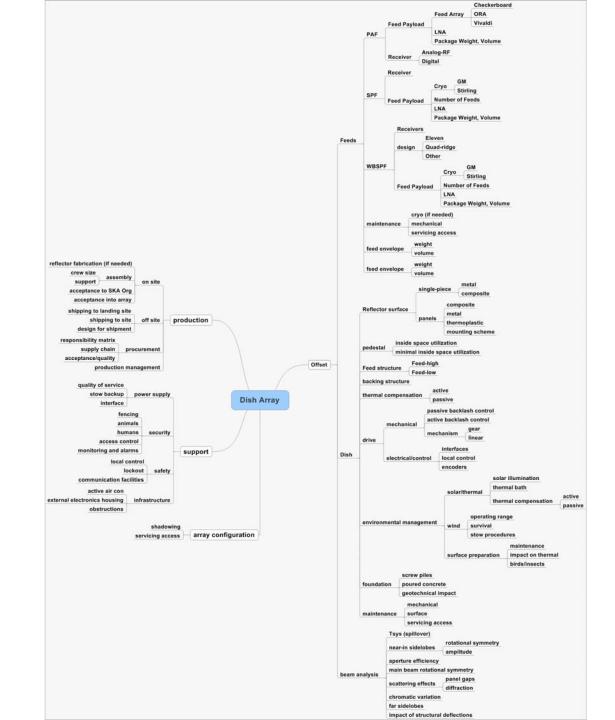
WBS: Telescope

WBS: AA-low

AA-low WBS								
		Cons	ortiun	n Mem				
3 SKA.TEL.LFAA - Low Frequency Aperture Array		1	2	3		Notes		
4 SKA.TEL.LFAA.MGT - Manageme	<mark>ent</mark>							
4 SKA.TEL.LFAA.SE - System Engir	<mark>leering</mark>							
4 SKA.TEL.LFAA.ELM - Elements		d	f					
4 SKA.TEL.LFAA.LNA - LNA's								
4 SKA.TEL.LFAA.SIGT - Signal Tran	<mark>sport</mark>							
4 SKA.TEL.LFAA.BF - Beam Forme	r	р		d	f			
4 SKA.TEL.LFAA.PWR - Power			р					
4 SKA.TEL.LFAA.INFRA - Infrastruc	<mark>cture</mark>							
4 SKA.TEL.LFAA.LMC - Local Moni	toring and Control							
4 SKA.TEL.LFAA.VS - Verification S	System	·						

d=design; f=fabricate; p=participate


WBS: AA-mid


AA-mid WBS								
	Consortium Members							
	1	2	3		Notes			
3 SKA.TEL.AI - Advanced Instrumentation								
4 SKA.TEL.AI.MFAA - Mid Frequency Aperture Array								
5 SKA.TEL.AI.MFAA.MGT - Management								
5 SKA.TEL.AI.MFAA.SE - System Engineering								
5 SKA.TEL.AI.MFAA.ARR - Array	d,f							
6 SKA.TEL.AI.MFAA.ARR.ELE - Elements			f					
6 SKA.TEL.AI.MFAA.ARR.RX - Receivers								
6 SKA.TEL.AI.MFAA.ARR.SIGT - Signal transport		f						
6 SKA.TEL.AI.MFAA.ARR.SP - Signal processor	d	f						
5 SKA.TEL.AI.MFAA.PWR - Power								
5 SKA.TEL.AI.MFAA.LMC - Local Monitoring and Control								

d=design; f=fabricate; p=participate

Symmetric Dish Decision/Option Tree

Offset Dish Decision/Option Tree

WPC attributes

- Each WPC will be a consortium of astronomical institutions and industry.
 - Probably a single lead institution.
- Very significant organisational structure on their own.
 - O WPs are likely to be large.
- WPCs will need:
 - Clear, stable governance structure
 - can enter into legal agreements with the SPO, and probably with national funding agencies.
 - WPCs composed of consortia will need agreements.
 - Financially capable of taking on:
 - the work
 - the appropriate amount of risk
 - Intellectual Property (IP)
 - Managing, owning and protecting IP Exploring the Universe with the world's largest radio telescope
 - Obtaining rights to required IP when necessary

WPC attributes (2)

- Demonstrated project management background
 - Project manager and chief system engineer will be the principal points of contact with the SPO
 - Rapid, meaningful (collaborative) lines of communication with SPO
- Sufficient capacity and depth to carry out the design work and any required verification programmes
- Engineering skill-set (talent pool) with the appropriate specialties and experience:
 - Demonstrated technical expertise and experience
 - Appropriate staff to develop production data-packs for the construction phase

Assembling Work Package Consortia

- The mechanisms by which Work Package Consortia will be assembled is still under discussion.
 - o "Self assembly" will certainly happen.
 - Qualification process to be put together.
- Selection process for individual WPs is TBD.
- Industrial participation in Work Package Consortia is crucial to rounding out capabilities.
 - Very unlikely that any of the (sponsoring) research organisations have the engineering depth to carry out more than a small fraction of the work.
- There are many models for industry involvement:
 - A constant factor: Industry is needed to contribute at many levels to the SKA PEP phase.

End