

Blind Absorption Line Surveys Evolution of cold gas in galaxies

Neeraj Gupta

AAVP2011

AST(RON

Star formation intimately related to Cold gas

AAVP2011

AST(RON

Absorption lines as probe of cold gas

AST(RON

Damped Lyman- α Absorbers (DLAs)

Thanks to SDSS, >1000 known at z>2.

Noterdaeme et al. 2009, Prochaska et al. 2009, Zwaan et al. 2005

AST(RON

AAVP2011

Tue, Dec 13, 2011

Number density of 21-cm absorbers

Gupta et al. 2009; Lane 2000

AST(RON

- HI 21cm vs UV
- HI 21cm vs Molecular

$$x = \frac{\alpha^2 g_p}{\mu}; \frac{\Delta x}{x} = \frac{z_{UV} - z_{21}}{1 + z_{21}}$$

$$y = g_p \alpha^2; \frac{\Delta y}{y} = \frac{z_{mol} - z_{21}}{1 + z_{mol}}$$

• OH 18cm vs HI 21cm

$$F = g_p (\alpha^2 \mu)^{1.57}$$

• OH 18cm satellite

$$G = g_p (\alpha^2 \mu)^{1.85}$$

Ammonia

$$\frac{\Delta\mu}{\mu} = 0.289 \frac{z_{inv} - z_{rot}}{1 + z_{abs}}$$

Tzanavaris et al. (2007) Kanekar et al. (2010)

PKS1413+135 at z=0.2467 TXS0218+357 at z=0.6847 (Murphy et al. 2001; Carilli et al. 2000; Wiklind et al. 1997, Varshalovich et al. 1996)

PMNJ0134-0931 at z=0.765 (Kanekar et al. 2005) TXS0218+357 at z=0.6847 (Chengalur et al. 2003)

PKS1413+135 at z=0.2467 (Kanekar et al. 2010). Also Darling (2004) and J0134-0931 at z=0.765.

TXS0218+357 at z=0.6847 (Murphy et al. 2008) PKS1830-211 at z=0..8858 (Henkel et al. 2009)

AST(RON

Radio absorption lines are more sensitive

- HI 21cm vs UV
- HI 21cm vs Molecular

$$x = \frac{\alpha^2 g_p}{\mu}; \frac{\Delta x}{x} = \frac{z_{UV} - z_{21}}{1 + z_{21}}$$

$$y = g_p \alpha^2; \frac{\Delta y}{y} = \frac{z_{mol} - z_{21}}{1 + z_{mol}}$$

• OH 18cm vs HI 21cm

$$F = g_p (\alpha^2 \mu)^{1.57}$$

• OH 18cm satellite

$$G = g_p (\alpha^2 \mu)^{1.85}$$

Ammonia

$$\frac{\Delta\mu}{\mu} = 0.289 \frac{z_{inv} - z_{rot}}{1 + z_{abs}}$$

Tzanavaris et al. (2007) Kanekar et al. (2010)

PKS1413+135 at z=0.2467 TXS0218+357 at z=0.6847 (Murphy et al. 2001; Carilli et al. 2000; Wiklind et al. 1997, Varshalovich et al. 1996)

PMNJ0134-0931 at z=0.765 (Kanekar et al. 2005) TXS0218+357 at z=0.6847 (Chengalur et al. 2003)

PKS1413+135 at z=0.2467 (Kanekar et al. 2010). Also Darling (2004) and J0134-0931 at z=0.765.

TXS0218+357 at z=0.6847 (Murphy et al. 2008) PKS1830-211 at z=0..8858 (Henkel et al. 2009)

AST(RON

Radio absorption lines are more sensitive

• OH 18cm satellite $G = g_p (\alpha^2 \mu)^{1.85} = (-1.18 \pm 0.46) \times 10^{-5}$

PKS1413+135 at z=0.2467 (Kanekar et al. 2010). Also Darling (2004) and J0134-0931 at z=0.765.

AST(RON

• OH 18cm satellite $G = g_p (\alpha^2 \mu)^{1.85} = (-1.18 \pm 0.46) \times 10^{-5}$

PKS1413+135 at z=0.2467 (Kanekar et al. 2010). Also Darling (2004) and J0134-0931 at z=0.765.

AST(RON

DLA with molecular hydrogen and 21cm absorption at z=3.174

$$x = \frac{\alpha^2 g_p}{\mu}$$

$$\frac{\Delta\mu}{\mu} \le 4.0 \times 10^{-4}$$

From 21cm and metal absorption lines:

$$\frac{\Delta x}{x} = -(1.7 \pm 1.7) \times 10^{-6}$$

$$\frac{\mu}{\alpha} = -(1.7 \pm 1.7) \times 10^{-6}$$
 or $\frac{\Delta \alpha}{\alpha} = -(0.85 \pm 0.85) \times 10^{-6}$

Srianand et al. 2010, MNRAS, 405, 1888

AST(RON

Case of J0108-0037 (z=1.3710)

.... need to be careful (Rahmani et al. 2012).

AST(RON

No clear picture on evolution of cold gas and time variation of fundamental constants

Intervening 21-cm absorbers

Only 5 molecular absorbers known at z>0.1.

AST(RON

Snow et al. 2006

AST(RON

Blind radio absorption line surveys now possible !

AAVP2011

Tue, Dec 13, 2011

Absorption line survey speed

	EMMA	APERTIF	ASKAP	EVLA	MeerKAT-1
Frequency (GHz)	0.450-1.45	1.0-1.7	0.7-1.8	1.0-50	0.9-1.75
Bandwidth (GHz)	0.5 (1.0)	0.3	0.3	0.5 (8.0)	0.35
FoV (deg ² ,1.4GHz)	78	8	30	0.3	0.6
z _{max} for HI absorption	2.16	0.42	1.03	0.42	0.58
S _{rms} (µJy, 1h, full BW)	37 (27)	30	35	7.6	14.6
S _{rms} (μJy, 1h, 100MHz)	84	49	61	17	27
S _{rms} (mJy, 1h, 5 km/s)	5.5	3.7	4.0	1.1	1.8
A/T (m ² /K)	40	105	58	246	150
SSFOM x10 ⁴ (m ⁴ /K ² / deg ²)	12.5	8.9	13.8	1.8	1.4
$SSL(\tau < \tau_o)/N_t$	1	0.92	0.73	5.3	5.6

Absorption line survey speed

redshift coverage

SurveySpeed($\tau < \tau_o$) $\propto (A_e/T_{sys})^2 x \Delta z x N_t$

number of targets

sensitivity

AAVP2011

Tue, Dec 13, 2011

Absorption line survey speed

· · · · · · · · · · · · · · · · · · ·					
	EMMA	APERTIF	ASKAP	EVLA	MeerKAT-1
Frequency (GHz)	0.450-1.45	1.0-1.7	0.7-1.8	1.0-50	0.9-1.75
Bandwidth (GHz)	0.5 (1.0)	0.3	0.3	0.5 (8.0)	0.35
FoV (deg ² ,1.4GHz)	78	8	30	0.3	0.6
z _{max} for HI absorption	2.16	0.42	1.03	0.42	0.58
S _{rms} (µJy, 1h, full BW)	37 (27)	30	35	7.6	14.6
S _{rms} (µJy, 1h, 100MHz)	84	49	61	17	27
S _{rms} (mJy, 1h, 5 km/s)	5.5	3.7	4.0	1.1	1.8
A/T (m²/K)	40	105	58	246	150
SSFOM x10 ⁴ (m ⁴ /K ² / deg ²)	12.5	8.9	13.8	1.8	1.4
$SSL(\tau < \tau_o)/N_t$	1	0.92	0.73	5.3	5.6

EMMA: ~500 21cm absorbers in ~300x5hrs

Blind absorption line survey: Goals

- 1) Detect ~1000 intervening 21-cm absorbers
- 2) Measure the evolution of cold atomic and molecular gas
- 3) Time variation of the fundamental constants of physics
- 4) Probe the magnetic field in absorbing galaxies
- 5) Synergy with ALMA, ELTs, etc.

Thank you

AST(RON