Cosmology with Next Generation Radio Telescopes: BAO (and other probes such as WL)

Mário Santos - Instituto Superior Técnico / CENTRA AAVP - ASTRON - Dec 2011

What do we want to probe?

Mário Santos - IST/CENTRA

Gold is gold...

Accelerated expansion is now official: 2011 nobel prize! But WHAT IS THE REASON??

What do we want to probe?

- Nature of Dark Energy (Cosmological Constant, Dynamical dark energy, Modified Gravity)
- Inflation (spectral index, primordial non-Gaussianity)
- Neutrino mass

Main probes

- Galaxy number density: clustering / 2-point correlation function (including BAO and Redshift Space Distortions)
- Weak Lensing (shear and magnification)
- Intensity mapping
- Test both the geometry of the Universe and the growth of structure

Baryon Acoustic Oscillations (BAO 101)

Martin White

BAO 101 – standard ruler

BAO using Galaxy number density z=1

- Detect galaxies (~ 10 sigma threshold)
- Use 2-point correlation in 2d (angular) and 3d (with z)
 - Need large number in each pixel to beat down Poisson fluctuations

BAO 101: measurements

- Galaxies form in dark matter overdensities
- 1% enhancement at the acoustic scale
- Can be seen in galaxy correlation function
- Position of the "bump" is independent of galaxy bias! (assuming it is constant on those scales)

SDSS: Eisenstein et al. 2005

BAO observations wish list

- Scales of interest (z=1):
 Min. BAO scale ~ 15.7 Mpc/h
- k_{max} ~ 0.2 h/Mpc
- Angular resol ~ 22.8 arcmin
- dz ~ 0.009
- Freq. resol ~ 3.14 MHz
- Max. BAO scale ~ 628 Mpc/h
- k_{min} ~ 0.01 h/Mpc
- Maximum angular scale ~ 15 deg
- dz ~ 0.35
- BW ~ 123 MHz
- Survey area ~ 20000 deg²
- 0.5 < z < 1.5 (2.0?)
- \circ 550 MHz < ν < 950 MHz
- Full Bandwidth ~ 500 MHz

BAO: design issues (threshold experiments)

- Galaxy surveys:
 - High sensitivity to beat shot noise (n×P(k) ~ 1)
 - Large survey volume to probe BAO scales and reduce cosmic variance
- Full SKA HI survey:
 - $f=1 (f=[10^6 m^2/A_{eff}][50 K/T_{sys}])$
 - FoV ~ 10 deg²
 - 10 σ detection
 - Full BW
 - 1 year
 - Survey area: 20,000 deg²
 - ~ 10⁹ HI galaxies

Mário Santos - IST/CENTRA

BAO: constraints from SKA HI survey

Abdalla, et al, 2010

Measuring the matter density field

	Range in z	$\Omega(sr)$	Nmodes	$\delta P/P$	Surveys
	0.0 - 0.2	3.0	3×10^4	6×10^{-3}	SDSS, SKA ₀
Dark Energy - Modified gravity	0.2 - 0.7	3.0	8×10^{5}	1×10^{-3}	BOSS
	0.2 - 2.0	0.06	1×10^5	3×10^{-3}	SKA ₁
	0.2 - 2.0	6.0	1×10^7	$3 imes 10^{-4}$	SKA ₂ , BigBOSS, Euclid
Curvature, non- Gaussianity, etc	2.0 - 3.0	0.3	6×10^5	1×10^{-3}	HETDEX
	2.0 - 6.0	0.01	7×10^4	a	SKA1
	2.0 - 6.0	6.0	4×10^7	2×10^{-4}	SKA ₂
EoR, Dark ages,	6.0 - 13.0	0.03	2×10^{5}	b	SKA ₀
	6.0 - 13.0	0.03	2×10^5	2×10^{-3}	SKA1
but also 🛛 🗸	6.0 - 13.0	3.0	2×10^7	2×10^{-4}	SKA ₂
cosmology	13.0 - 30.0	0.03	2×10^5	ь	SKA ₁
	13.0 - 30.0	3.0	2×10^7	2×10^{-4}	SKA ₂
	CMB	11.0 ^c	2×10^5		WMAP, Planck
					S Rawlings 20

- S. Rawlings, 2011
- SKA phase 1, z < 2: dishes with PAFs ~ 100 deg² survey
- SKA phase 2, z < 2: 250x56-m diameter AA? billion galaxy survey</p>
- Important to have different experiments/multi-wavelength approach to the dark energy problem (control of systematics)

Weak Gravitational Lensing

Hartlap, 2009

- Light is continuously deflected by large-scale structure
- Distortion (shear) of images of distant galaxies
- Direct measure of geometry and mass (growth of structure)
- No bias dependence!
 - Great Modified Gravity probe: $\Psi + \Phi$

- Estimated from galaxies ellipticities
- 1% change in ellipticity
- Assumption: random intrinsic orientation

Mário Santos - IST/CENTRA

Weak Lensing requirements

- Need very high image quality for shape measurements (good control of psf)
- Resolution ~ 0.1 arcsec
- High source density (~ 100 galaxies/arcmin²) to reduce shot noise
- High survey area (~ 20,000 deg²) to reduce cosmic variance (and probe large scales)
- Some redshift information (dz ~ 0.2)

Weak Lensing and SKA

- Not a design driver at the moment...
- Do continuum survey (30 nJy in 4h, Blake et al 2004)
- \sim 500 gal/arcmin² and shear rms \sim 0.2?
- Unknown scatter in intrinsic ellipticities...
- Tomographic WL experiment using HI survey
- 0.1 arcsec ~ 100 Km baselines
- Use dishes (with PAFs?) at ~ 1-2 GHz (~ 10 deg² FoV)
- Hard but worth trying!

However...

Don't forget Magnification!

• Effect on galaxy number:

Don't forget Magnification!

Increase of solid angle:

Don't forget Magnification!

Magnification of galaxy flux:

Magnification cross-correlation

- Correlate background and foreground object densities
- Effect will depend on the galaxy spectral index
- Use HI spectroscopic survey for both populations and divide into flux bins
- Work in progress (see e.g. Yang and Zhang, 2011)

Some examples: Cosmology with SKA₀

- Use large radio continuum surveys: EMU, WODAN (as well as LOFAR)
- Very little redshift information success due to large number of sources and median redshift ~ 1

Survey	Area	Frequency	N_{gal}	Mean z	Median z
$LOFAR MS^3 10\sigma$	2π	150 MHz	$1.0 imes 10^6$	1.6	1.3
$LOFAR MS^3 5\sigma$	2π	150 MHz	$2.0 imes 10^6$	1.7	1.3
LOFAR Tier1 10σ	2π	120 MHz	$6.5 imes 10^6$	1.8	1.1
LOFAR Tier1 5σ	2π	120 MHz	$1.5 imes 10^7$	1.6	1.0
EMU 10σ	3π	1400 MHz	$2.2 imes 10^7$	1.7	1.1
EMU 5σ	3π	1400 MHz	$5.4 imes 10^7$	1.6	1.1
WODAN 10σ	1π	1400 MHz	$7.3 imes 10^6$	1.7	1.1
WODAN 5σ	1π	1400 MHz	$1.8 imes 10^6$	1.6	1.1

See Raccanelli et al, 2011

Some examples: Cosmology with SKA₀

- Use large radio continuum surveys: EMU, WODAN (as well as LOFAR)
- Very little redshift information success due to large number of sources / sky area and mean redshift ~ 1

Possible improvement with "statistical" redshift information (Camera et al, in preparation)

The power of combining datasets

 Use: source power spectrum + integrated Sachs-Wolfe effect (ISW correlation between density and CMB) + Cosmic Magnification (Dark Energy Survey galaxies as foreground)

Mário Santos – IST/CENTRA

Cosmology with SKA₀ – yes, even at z > 6

- Look at large scales (k < 0.15/Mpc)</p>
- Telescopes need large FoV and bandwidth to probe small k modes
- σ(f_{NL})=[200, 6, 10, 0.6] for [LOFAR, MWA, SKA, Omniscope/FFTT]
- Current constraints: WMAP $\sigma(f_{NL})$ ~30; Planck: $\sigma(f_{NL})$ ~8
- Analysis independent of Reionization model
- First generation experiments can be competitive with Planck!

S. Joudaki et al, PRL, 2011

Mário Santos - IST/CENTRA

Cosmology with SKA₀: HI Intensity mapping

- Measure integrated flux in each pixel at a given frequency
- Non-threshold experiment
- Just like the CMB (and EoR)
- Great for BAO!

HI intensity: expected signal

- Assume: M_{HI}(M_{halo}) at z
- Remember: large pixels! (low resolution)
- ~ (481, 573, 544) μK at z=(1,2,3)
- $\Omega_{\rm HI} \sim 10^{-3}$
- Consistent with Chang et al. measurements, etc
- Bias ~ 1 at z=1

Using Obreschkow et al., 2010 + Millennium Simulation

Gong et al, 2011

EMMA BAO constraints

- Assume:
 - \circ A=2000 m²
 - 14 stations
 - Tsys~45K
 - FoV=78 deg²

- time=2000 hours
- Maximum baseline=300m
- Minimum baseline=10m?
- Frequency resolution=0.3 MHz

z=1 - 710.25 MHz dz ~ 0.2 (0.3 MHz) Note: with 500 MHz BW can measure 7 bins in one go!

Conclusions...

- Radio Telescopes provide brave new world for Cosmology
- Radio Galaxy surveys ~ 700 MHz give competitive dark energy constraints with future surveys
- Multi-wavelength / cross-correlation surveys crucial for future precision cosmology (systematics...)
- Already very interesting results with current pathfinders
- HI intensity mapping opens a novel window for Cosmology (the race is on!)
- Requirements: large FoV and reasonable collecting area at ~ 700 MHz
- We still have to sort out problem with foregrounds and calibration, but if you can do it for the EoR...

Thank you!