

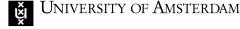
Radio Astronomy

Lecture |

The History of Radio Astronomy: Past to Present

Lecturer: Joeri van Leeuwen (<u>leeuwen@astron.nl</u>)

SPA1.20 - April 3, 2017

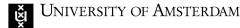


Course Goals

Get you excited about radio astronomy!

Give a broad overview of the science, techniques and context of radio astronomy.

Enable the student to feel comfortable with using radio astronomical observations as part of their multi-wavelength science approach or set them on the path to being a radio astronomer.


Resources

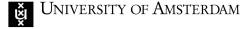
Course Wiki

https://www.astron.nl/astrowiki/doku.php?id=uva_msc_radioastronomy_2017

Main resource for the course, and includes:

- Schedule
- Lecture slides
- Practicum materials
- Materials from other similar courses
- Recommended books

Lecturers


Coordinator: Jason Hessels (j.w.t.<u>hessels@uva.nl</u>)

Joeri van Leeuwen (<u>leeuwen@astron.nl</u>)

Michael Wise (<u>wise@astron.nl</u>)

Teaching Assistants

Daniele Michilli (danielemichilli@gmail.com)

Marking Scheme

- 35% Observing proposal and presentation (written proposal: 20%, oral presentation 15%)
- 35% Other Practica (simulate interferometer: 10%, VLA imaging: 15%, pulsar search: 10%)
- 30% Final exam

Lectures (and other important sessions)

Lecture 1: Apr 3, 2017 - The History of Radio Astronomy: Past to Present - Joeri

Lecture 2: Apr 7, 2017 - The Science of Radio Astronomy: Extragalactic - Michael

Lecture 3: April 10, 2017 - The Science of Radio Astronomy: Galactic and Solar System - Joeri

Lecture 4: April 21, 2017 - Emission Mechanisms in Radio Astronomy - Jason

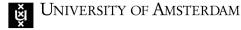
Lecture 5: April 24, 2017 - The Radio Telescope - Joeri

Lecture 6: May 1, 2017 - The Techniques of Radio Interferometry I: The Basics - Jason

Lecture 7: May 8, 2017 - The Techniques of Radio Interferometry II: Calibration - Michael

Lecture 8: May 12, 2017 - The Techniques of Radio Interferometry III: Imaging - Michael

Lecture 9: May 15, 2017 - The Techniques of Time-Domain Radio Astronomy 1: Single-dish techniques - Joeri


May 18, 2017 - Field Trip to LOFAR and Westerbork - Michael + Joeri + Jason + Daniele

Lecture 10: May 19, 2017 - The Techniques of Time-Domain Radio Astronomy II: High time resolution with interferometers - Jason

Lecture 11: May 22???, 2017 - The Future of Radio Astronomy - Michael (NAC: May 22-24)

May 24???, 2017 - Observing proposal presentations - All (NAC: May 22-24)

Jun 2, 2017 - Final Exam - Jason + Daniele

Practica

(follow lectures; work also required outside "lab" time)

Practicum I - Apr 3 - Joeri + Daniele - Short lecture on how to write an observing proposal (see slides below).

Practicum 2 - Apr 7 - Jason + Joeri + Michael + Daniele - Discuss observing proposal ideas in a group (outside if possible!).

Practicum 3 - Apr 10 - Arrange appt. w your advisor - Discuss observing proposal ideas one-on-one.

Practicum 4 - Apr 21 - Jason - Work on observing proposal yourself.

Practicum 5 - Apr 24 - Jason + Daniele - Setup computing environment.

Practicum 6 - May I - Jason - Simulate your own interferometer - session I.

Practicum 7 - May 8 - Michael - Simulate your own interferometer - session II.

Practicum 8 - May 12 - Michael - Calibrate and image VLA data - session I.

Practicum 9 - May 15 - Joeri - Calibrate and image VLA data - session II.

RA Field Trip - May 18 - All day

Practicum 10 - May 19 - Jason - Search and time pulsar in LOFAR data - session I.

Practicum II - May 22??? - Michael - (NAC: May 22-24) - Search and time pulsar in LOFAR data - session II.

Final Presentations - May 24??? - All - (NAC: May 22-24)

Questions?

The History of Radio Astronomy: Past to Present

Lecture outline

- Key figures in the pre-history of radio astronomy
- Key figures in early radio astronomy
- Seminal discoveries and nobel prizes
- Key instruments
- The current landscape

Key figures in the prehistory of radio astronomy

James Clerk Maxwell

(1831-1879)

- Maxwell's equations encapsulated all that was known about electricity and magnetism.
- Unify electricity and magnetism as a single electromagnetic force.
- Maxwell's equations predict electromagnetic waves.
- Light is a form of electromagnetic radiation.

So do natural (astronomical) sources produce em-waves?

Maxwell's Equations

Gauss's Law

1.
$$\nabla \cdot \boldsymbol{E} = 4\pi \rho$$

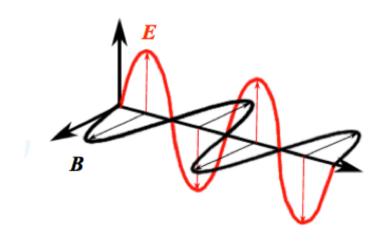
Faraday's Law of Induction

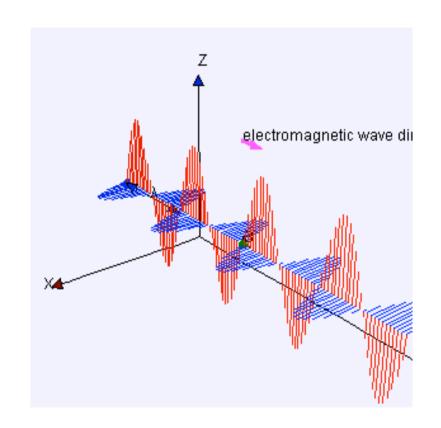
2.
$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

Gauss's Law for Magnetism

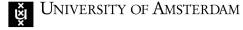
3.
$$\nabla \cdot \mathbf{B} = 0$$

Ampere's Circuital Law


4.
$$\nabla \times \mathbf{B} = \frac{4\pi \mathbf{J}}{c} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

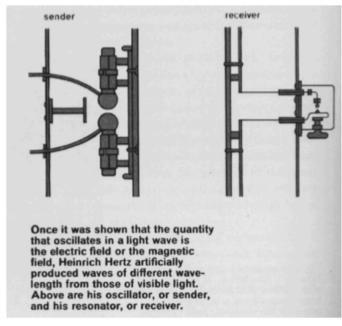


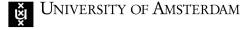
Maxwell's Equations


$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 \sin(\omega t - \mathbf{k} \cdot \mathbf{r} + \varphi_0)$$

$$\mathbf{B}(\mathbf{r},t) = \mathbf{B}_0 \sin(\omega t - \mathbf{k} \cdot \mathbf{r} + \varphi_0)$$

Solution is a wave




Heinrich Hertz

(1857-1894)

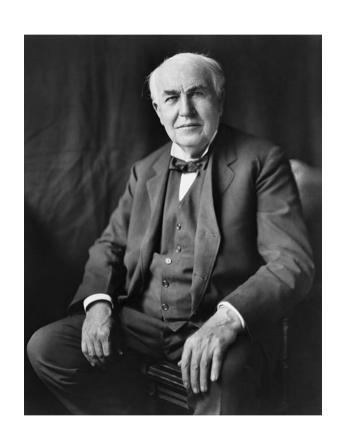
- First observation of electromagnetic waves ("Hertzian" or "aetheric" waves).
- In 1888 built a system for sending and receiving
 5-m radio waves.

Guglielmo Marconi

(1874 - 1937)

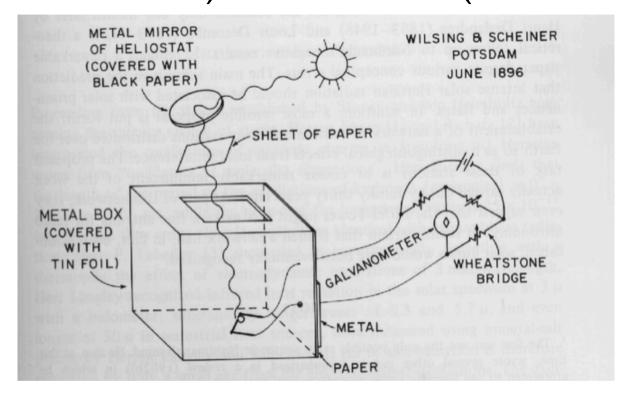
- Italian (also heir to Irish/Scots Whiskey distillery Jameson & Sons).
- Improved transmitter and receiver designs and made communication practically possible (Nobel Prize 1909).
- 1901: communication between Newfoundland, Canada and Cornwall, UK (though some skepticism about exact first detection).
- Father of long-distance radio communication.
- Mussolini was his best man at second wedding

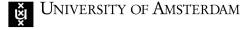
Nobel Prize Physics 1909


Guglielmo Marconi & Karl Ferdinand Braun

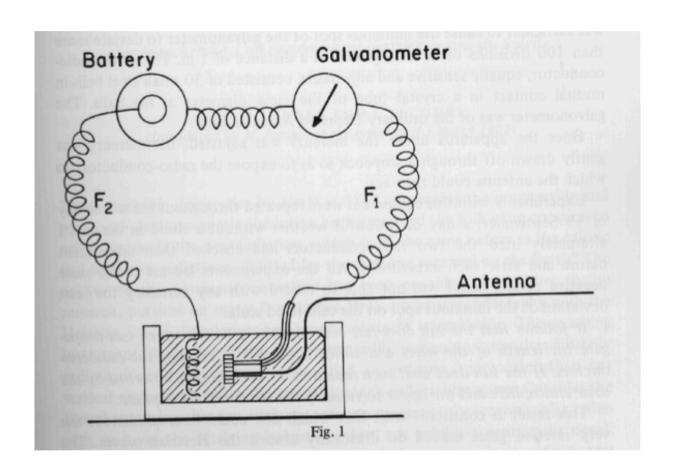
"in recognition of their contributions to the development of wireless telegraphy"

Thomas Edison


(1847 - 1931)

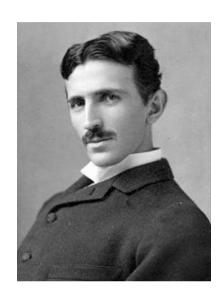

 First recorded suggestion of looking for astronomical sources of radio waves (1890).

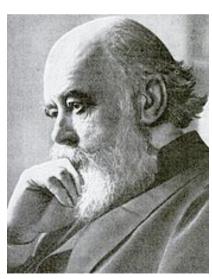
Johannes Wilsing & Julius Scheiner (1856 - 1943) (1858 - 1913)

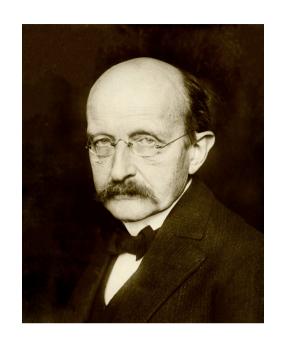


- Astrophysicists.
- First to properly publish their attempt to detect the Sun in radio (Ann. Phys. Chem. 59, 782, 1896; in German).
- Atmospheric absorption to blame?

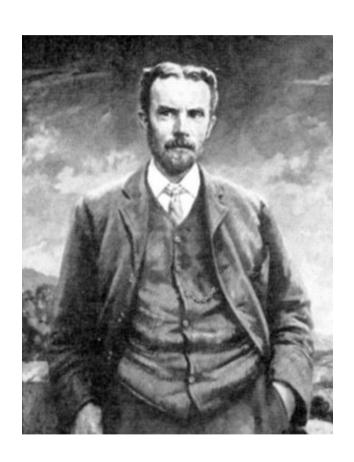
Charles Nordman




- French graduate student.
- Took experiment to top of Mont Blanc (avoid absorption).


Still more attempts...

 Nikola Tesla & Oliver Lodge also tried to detect Sun, unsuccessfully.

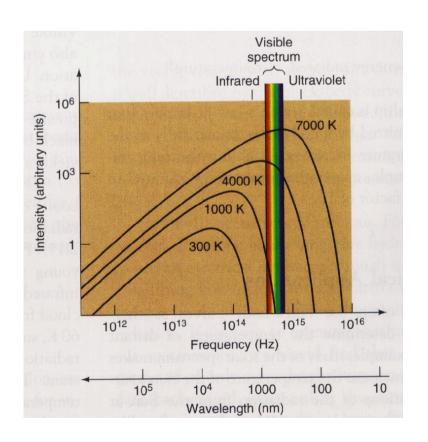

Max Planck

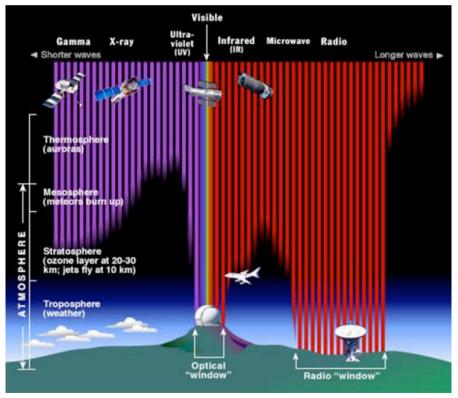
(1858 - 1947)

- Explanation of black-body spectrum using "quanta" of energy.
- Prediction for the Sun shows very little thermal radio emission.

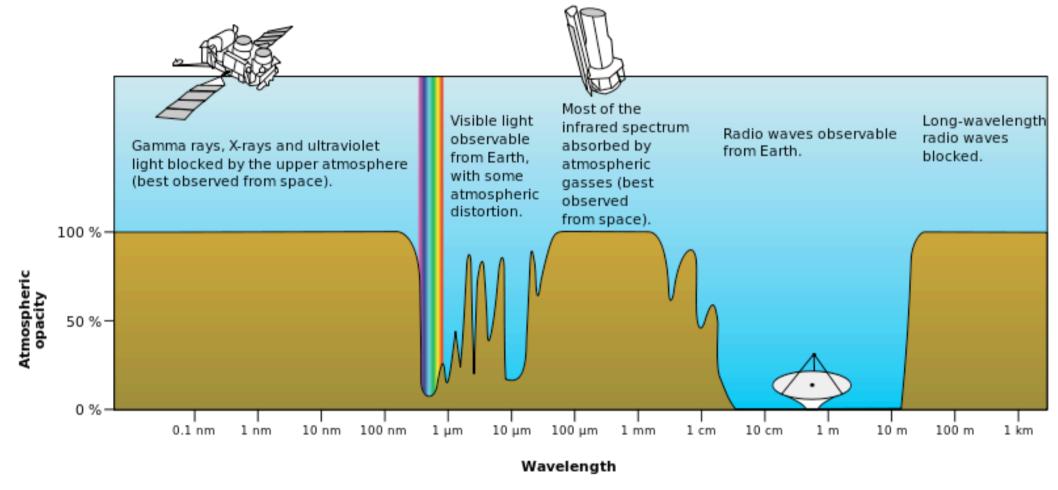
Oliver Heaviside

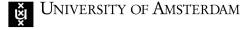
(1850 - 1925)




- British.
- Ionized ionospheric layer will reflect low-frequency radio waves (< I0-20MHz).
- lonosphere predicted in 1902, observed in 1920.
- The "Kennelly-Heaviside" layer.

1902-1932


- People discouraged by Planck's prediction of low thermal brightnesses.
- Attempts also discouraged because of the ionosphere.



EM Spectrum

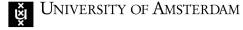
- Only optical/IR and radio pass through the atmosphere.
- Radio window: Icm 30m / I0MHz 30 GHz (or more)

Key figures in early radio astronomy

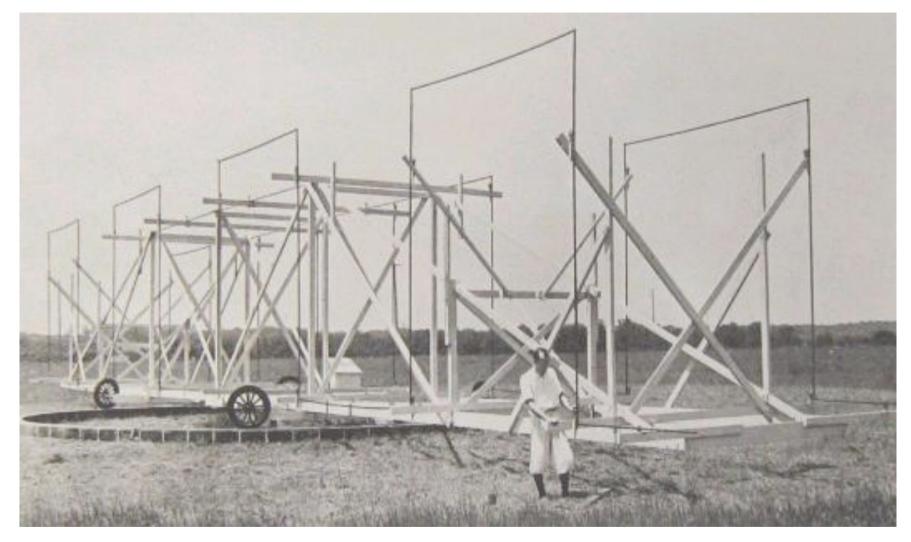
Karl Guthe Jansky

(1905-1950)

- American
- Engineer at Bell Telephone Laboratories.
- Investigating interfering static in wireless communication.
- Directional antenna (at 20MHz).
- Repeating signal at the 23h56m siderial rate.


Karl Guthe Jansky

(1905-1950)


- Direction of Sagittarius.
- First detection of radio waves from an astronomical source (the Milky Way) announced in 1933.
- Proposed a 30-m dish, but...
- Re-assigned to another project by Bell Labs.
- Namesake of the flux density unit the "Jansky" (IJy = 10-26 W/m2/Hz).

No Nobel Prize because he died too young?

Jansky's telescope 1933

Discovery during the Great Depression bad timing? Radio astronomy did not immediately take off...

Jansky's telescope today

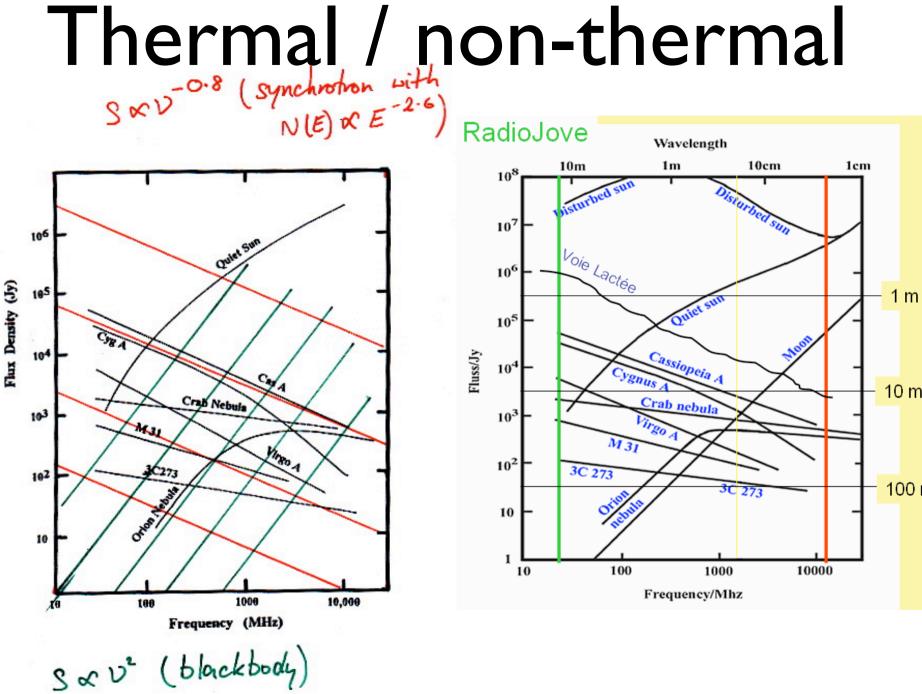
One of the three historic radio telescopes in Green Bank, West Virginia (replica).

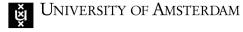
Grote Reber

(1911 - 2002)

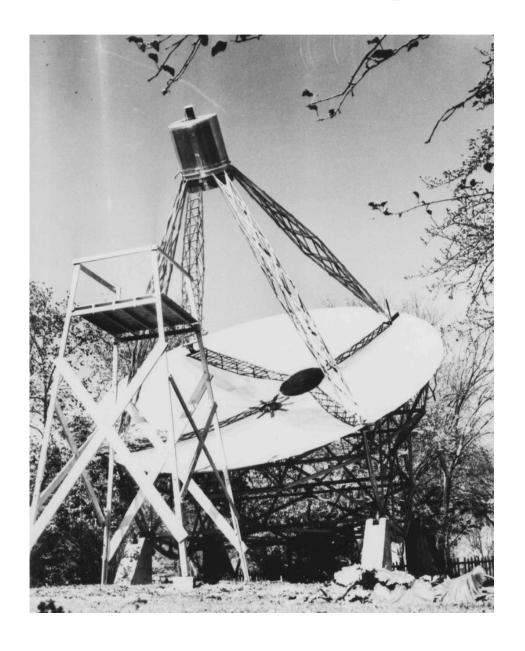
• American.

- Amateur inspired by Jansky's pioneering work.
- Couldn't get a job at Bell Labs (height of Great Depression).
- Built a 9-m parabolic reflector in 1937 (in his own backyard!).
- Only successful on third attempt (3300MHz, 900MHz, 160MHz).
- Conducted first sky survey at radio frequencies.

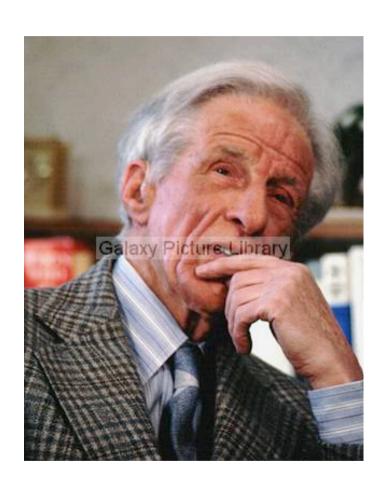

Grote Reber


(1911-2002)

- First true radio astronomer.
- Sole radio astronomer for nearly a decade.
- Mystery of low-energy (non-thermal, synchrotron) emission.
- Set the stage for the explosion in radio astronomy that followed WWII.
- Some of his ashes at ASTRON and at other major radio institutes.

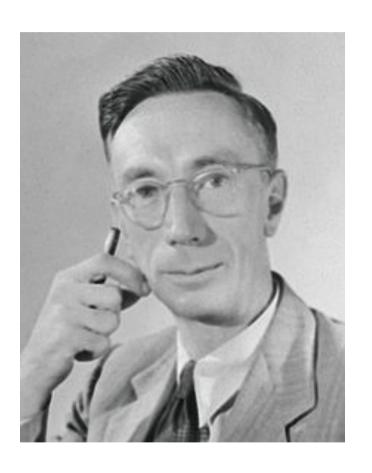


Reber's telescope 1937


Reber's telescope today

One of the three historic radio telescopes in Green Bank, West Virginia (reconstructed).

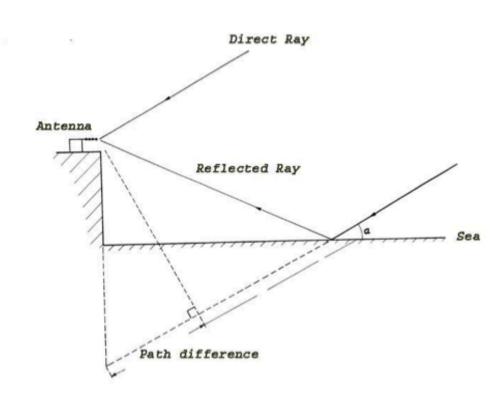
J.S. Hey

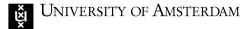


- British Army research officer (radar WWII).
- First detection of radio waves from the Sun in 1942.
- First localized an extra-galactic radio source in Cygnus.
- Set stage for explosion of radio astronomy research in UK after WWII.

Joseph Pawsey

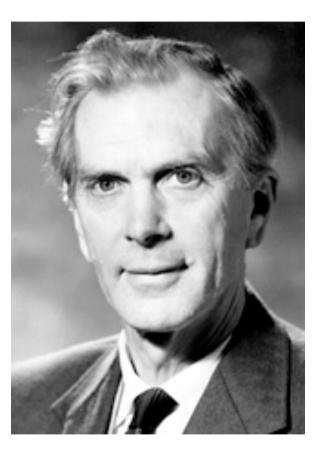
(1908 - 1962)


- Australian.
- Early studies of irregularities in the ionosphere.
- Developed microwave technology for the Australian Navy during WWII.
- Introduced interferometry to radio astronomy.
- Used "sea interferometry" at Dover Heights to resolve sunspots.
- Father of radio astronomy in Australia.


"Sea" interferometry

(mid 1940s)

Dover Heights near Sydney


Martin Ryle

(1918 - 1984)

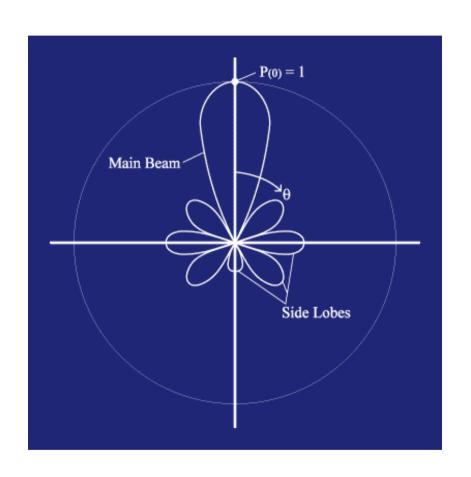
- First published interferometric observations (see Pawsey).
- Introduced (Earth-rotation) aperture synthesis to radio astronomy (1974 Nobel Prize).
- Built first multi-element interferometer in 1946.
- Led 3C catalog in 1959.

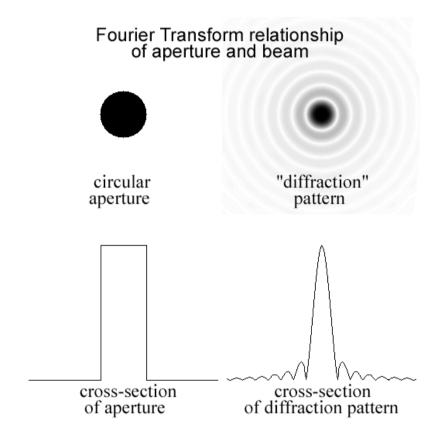
Cambridge radio catalogs

e.g. famous "3C" catalog

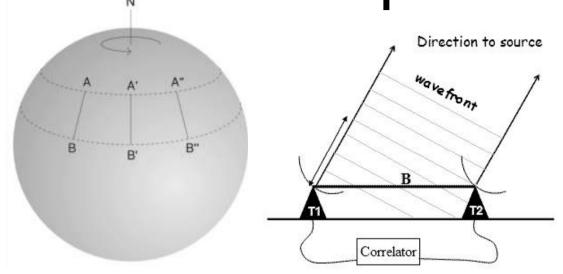
- Various Cambridge interferometers at 80 -200MHz.
- IC, 2C First sample of quasars.
- 3C published in 1959.
- Many of the brightest, most famous sources are "3C" sources.

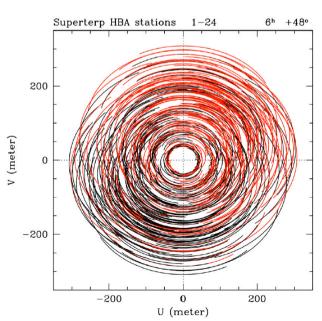
Bernard Lovell

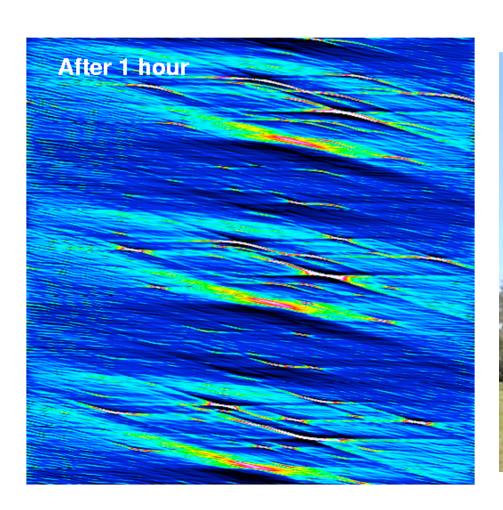

(1913 - 2012)



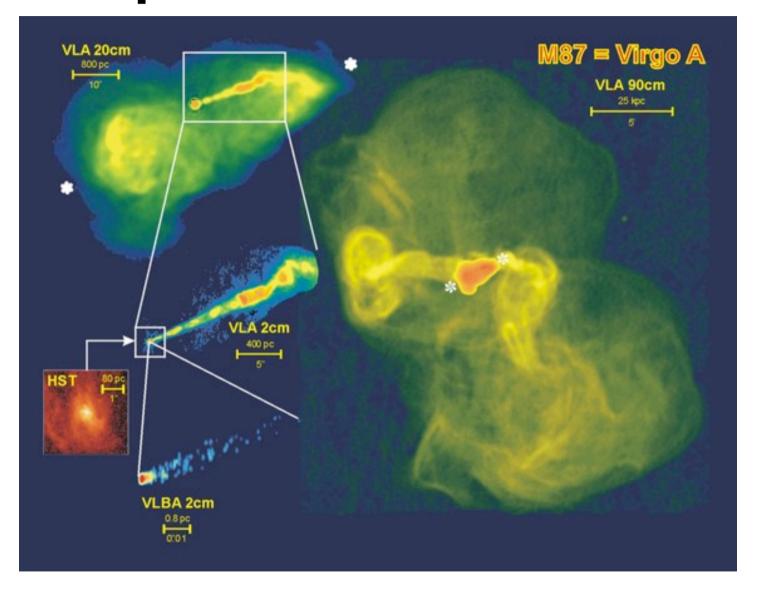
- British
- Director Jodrell Bank Observatory 1945 -1980.
- Worked on airborne radar systems during WWII.
- Led construction of the 76-m Lovell Telescope.

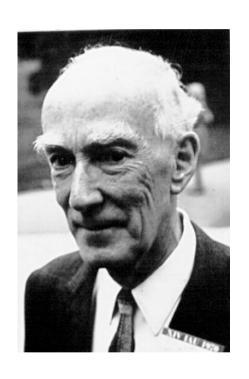

Radio telescope FoV




Development of interferometry and aperture synthesis

- Need for resolution.
- Earth rotation fills in the image.
- Sky brightness is the 2D Fourier transform of the spatial frequencies.


Development of interferometry and aperture synthesis


The quest for resolution

Jan Oort

(1900-1992)

- Professor in Leiden and father of Dutch radio astronomy.
- Expert on Milky Way structure.
- Kootwijk radar dish used after WWII (start of Dutch radio astronomy).
- Built Dwingeloo telescope and later Westerbork.
- Upon his death, Nobel Prize winning astrophysicist Subrahmanyan Chandrasekhar remarked, "The great oak of Astronomy has been felled, and we are lost without its shadow."

De radio-telescoop te Kootwijk (zie ook de voorplaat). De middellijn van de spiegel is $7^{1}/_{2}$ m. Het gevaarte kan op zijn voetstuk draaien. De spiegel zelf kan omhoog en omlaag gericht worden.

De parabolische zandkuil van de radio-sterrenwacht te Kootwijk. (De middellijn bedraagt 30 meter). In het middelpunt is de antenne duidelijk te zien.

Beginnings of Dutch radio astronomy

- Presided over by Jan Oort.
- Kootwijk radar antenna leftover from WWII by Germans.
- First (Dutch) detection of 21cm line.

Hendrik van de Hulst

(1918-2000)

- Student of Oort
- In 1944 first predicted the 21cm hyperfine line of neutral interstellar hydrogen.
- First reveal spiral structure of Milky Way.

Prediction of the 21-cm Line

Plate 1.6 Van de Hulst reading his paper on the 21 cm hydrogen line. (This photograph taken in 1955 is a reconstruction of the 1944 meeting).

(By courtesy of H. C. van de Hulst, Leiden)

(re-enactment)

(1944)

- Astronomers still meeting in the Netherlands during WWII.
- ApJ still reaching Leiden Observatory.
- Excited by Reber's findings,
 Oort realized that a radio
 spectral line could be used to
 map the Milky Way's structure
 (optical is absorbed).

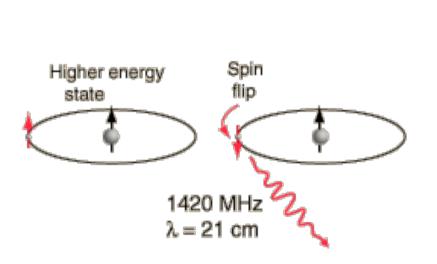
Prediction of the 21-cm Line

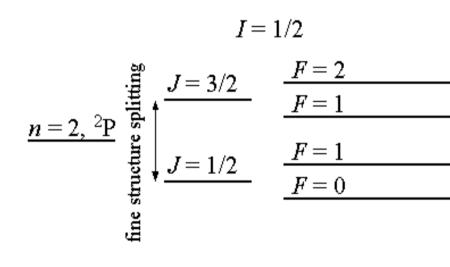
Plate 1.6 Van de Hulst reading his paper on the 21 cm hydrogen line. (This photograph taken in 1955 is a reconstruction of the 1944 meeting).

(By courtesy of H. C. van de Hulst, Leiden)

(re-enactment)

(1944)


- Oort asked van de Hulst to investigate what lines there might be.
- van de Hulst discovered that a 21-cm line would result from an electron flipping its spin in the ground state of hydrogen.
- Published in Dutch in the Ned.Tijdschrift voor Natuurkunde.



Prediction of the 21-cm Line

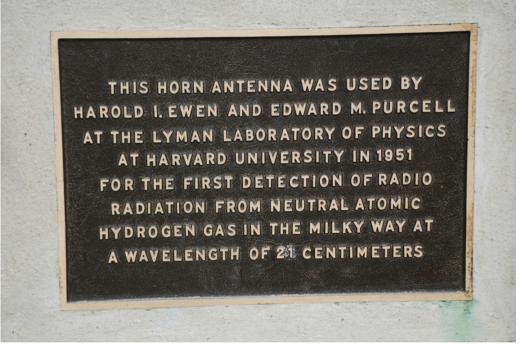
(1944)

Frequency of 1420.40575177 MHz, which is equivalent to the vacuum wavelength of 21.10611405413 cm in free space.

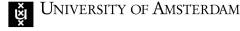
$$n = 1, {}^{2}S$$
 $J = 1/2$ $F = 0$

hyperfine structure splitting

Detection of the 21-cm Line

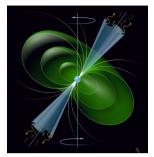


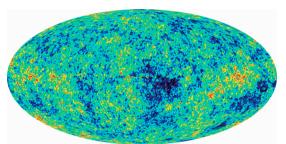
(1951)


- Building a sensitive receiver proved challenging.
- Reber started work but moved on.
- Ewen & Purcell at Harvard made first detection on March 25th, 1951.
- van de Hulst visiting Harvard at that time.
- Talked to Oort on phone for an hour.
- American and Dutch results were published in the same issue of Nature

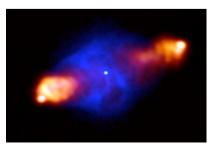
Ewen & Purcell Feed Horn Today

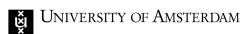
One of the three historic radio telescopes in Green Bank, West Virginia (original).



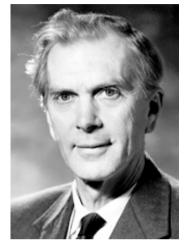

Seminal discoveries and Nobel prizes

Seminal Discoveries


Pulsar - Jocelyn Bell & Antony Hewish (1967)

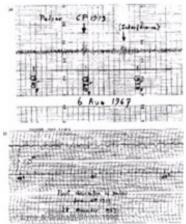

Cosmic Microwave Background - Arno Penzias & Robert Wilson (1965)

Quasars - Martin Ryles et al. (late 1950s)

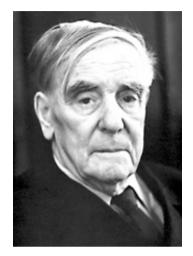


Radio Galaxies - Grote Reber, Bolton, Stanley, et al. (1940 - 1950s)

Nobel Prize Physics 1974


Martin Ryle & Antony Hewish

"for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars"

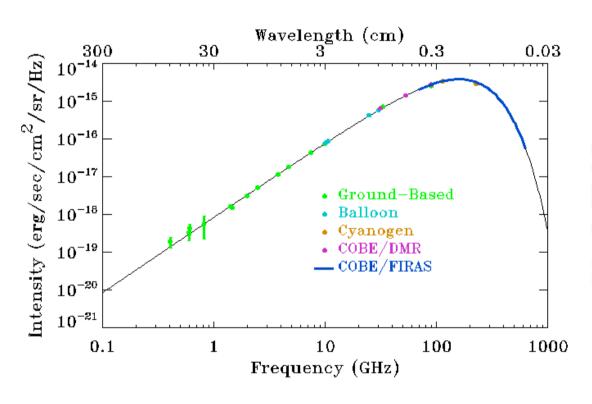


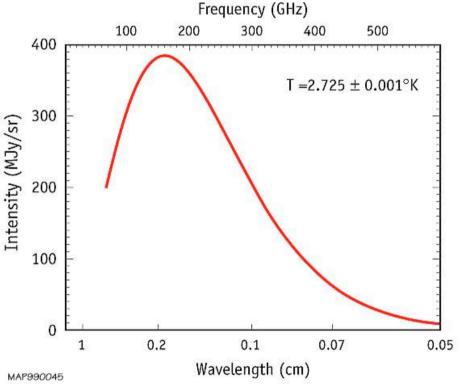
Jocelyn Bell-Burnell

Nobel Prize Physics 1978

Pyotr Kapitsa, Arno Penzias & Robert Wilson

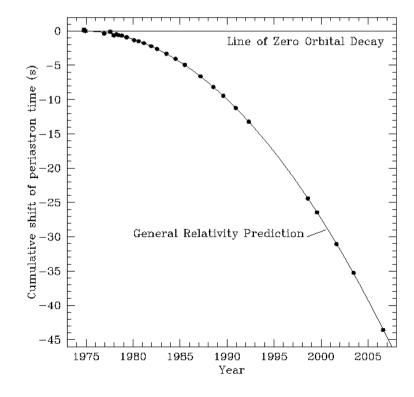
"for their discovery of cosmic microwave background radiation"





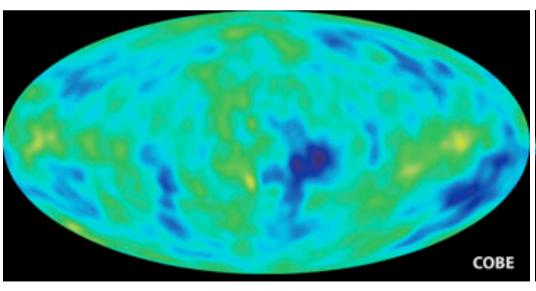
Universe's temperature

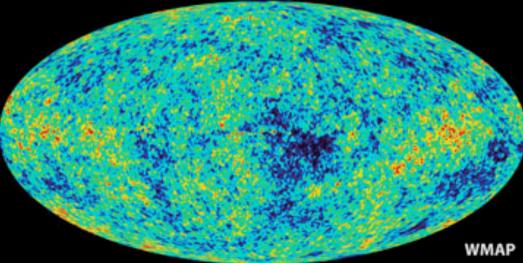
SPECTRUM OF THE COSMIC MICROWAVE BACKGROUND


Nobel Prize Physics 1993

Russell Hulse & Joseph Taylor

"for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation"


Nobel Prize Physics 2006



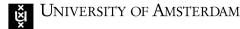
John Mather & George Smoot

"for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation"

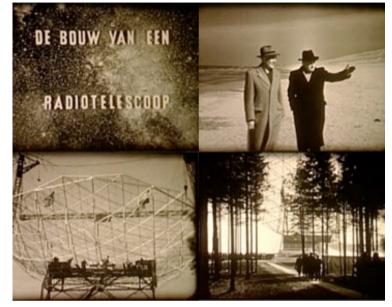
Key instruments

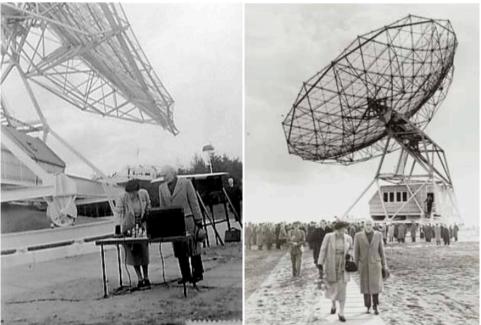
Historic Radio Telescopes

http://en.wikipedia.org/wiki/Timeline_of_telescopes,_observatories,_and_observing_technology


- 1930 Karl Jansky builds a 30-meter long rotating aerial radio telescope. This was the first radio telescope.
- 1937 Grote Reber builds a 31-foot (9.4 m) radio telescope
- 1946 Martin Ryle and his group perform the first astronomical observations with a radio interferometer
- 1947 Bernard Lovell and his group complete the Jodrell Bank 218-foot (66 m) non-steerable radio telescope
- 1954 Earth rotation aperture synthesis suggested (see e.g. Christiansen and Warburton (1955))
- 1956 Dwingeloo Radio Observatory 25 m telescope completed, Dwingeloo, Netherlands
- 1957 Bernard Lovell and his group complete the lodrell Bank 250-foot (75 m) steerable radio telescope (the Lovell Telescope)
- 1959 The 3C catalogue of radio sources is published (revised in 1962)
- 1960 Owens Valley 27-meter radio telescopes begin operation, located in Big Pine, California
- 1961 Parkes 64-metre radio telescope begins operation, located near Parkes, Australia
- 1962 Green Bank, West Virginia 90m radio telescope
- 1963 Arecibo 300-meter radio telescope begins operation, located in Arecibo, Puerto Rico
- 1964 Martin Ryle's I-mile (1.6 km) radio interferometer begins operation, located in Cambridge, England
- 1965 Owens Valley 40-meter radio telescope begins operation, located in Big Pine, California
- 1967 First VLBI images, with 183 km baseline
- 1970 Westerbork Synthesis Radio Telescope completed, near Westerbork, Netherlands
- 1972 100 m Effelsberg radio telescope inaugurated (Germany)
- 1980 Completion of construction of the VLA, located in Socorro, New Mexico
- 1984 IRAM 30-m telescope at Pico Veleta near Granada, Spain completed
- 1987 15-m James Clerk Maxwell Telescope UK submillimetre telescope installed at Mauna Kea Observatory
- 1987 5-m Swedish-ESO Submillimetre Telescope (SEST) installed at the ESO La Silla Observatory
- 1988 Australia Telescope Compact Array aperture synthesis radio telescope begins operation, located near Narrabri, Australia
- 1989 Cosmic Background Explorer (COBE) satellite
- 1993 Very Long Baseline Array of 10 dishes
- 1995 Giant Metrewave Radio Telescope of thirty 45 m dishes at Pune
- 2000 Green Bank Telescope 100x110m dish completed in West Virginia
- 2011 Low-Frequency Array (LOFAR) opens in the Netherlands
- 2012 Jansky VLA (upgraded array) opens in New Mexico
- 2012 Long-Wavelength Array (LWA) opens in New Mexico
- 2012 Australia Square Kilometer Array Pathfinder (ASKAP) opens in Australia
- 2013 Murchison Widefield Array (MWA) opens in Australia

Dwingeloo


- Near Dwingeloo, the Netherlands.
- Opened in 1956.
- 25-m dish (briefly the largest in the world).
- Mapped 21cm line emission in the Milky Way.
- Largest amateur radio telescope in the world (see "CAMRAS".
- Recently renovated.



Construction of Dwingeloo

Telescope

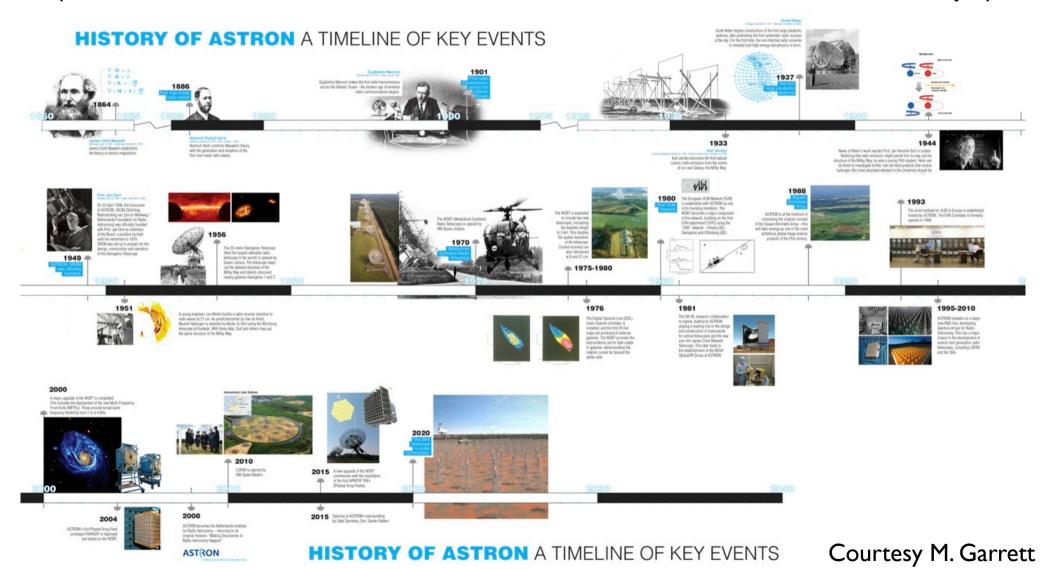
http://www.astron.nl/about-astron/history/footage/ historic-footage

- Built by Nederlandse Spoorweg.
- Inaugurated by Koningin Juliana.

Westerbork

- Near Westerbork, the Netherlands.
- Opened in 1970.
- Premiere interferometer of its time.
- Operated by ASTRON.
- 14 dishes of 25-m diameter (two movable).
- Equatorially mounted.
- Maximum baseline 2.7km.
- East-West array (12hr for full synthesis).
- Covers 300MHz 8GHz range.
- Resolution of ~0.5 arcsec at 1.4GHz.
- Being upgraded with "APERTIF".

Low-Frequency Array



- Near Exloo, the Netherlands and spread across Europe.
- Opened 2011.
- Operated by ASTRON.
- Sparse digital "aperture array".
- Two types of antennas.
- Pointing achieved by delays in software.
- Covers 10-240MHz range.
- Up to I arcsec resolution.
- World's premier low-frequency radio telescope.

History of ASTRON

(ASTRON is the "Netherlands Institute for Radio Astronomy")

Ryle Telescope

(at Mullard Radio Astronomy Observatory, formerly the "5-km Array")

- Near Cambridge, UK.
- Opened in 1957
- 8 dishes of 13-m diameter.
- East-West array.
- Adjustable baselines, between 18m and 4.8km.
- Covers the I5GHz (2cm) range.
- Now morphed into the Arcminute
 Microkelvin Imager (AMI) Large Array.

One-Mile Telescope

(at Mullard Radio Astronomy Observatory)

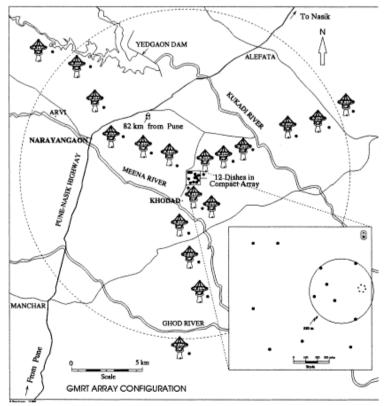
- Near Cambridge, UK.
- Opened in 1964.
- Operated by Cambridge Radio Astronomy group.
- 3 dishes of 18-m diameter (one movable).
- East-West array.
- First Earth-rotation aperture synthesis interferometer.
- Covered 400 and I400MHz ranges.
- Resolution of 20 arcsec at I.4GHz (3x better than unaided eye).
- Led to 1974 Nobel Prize for Martin Ryle.

Australia Telescope Compact Array

- Near Narrabri, Australia.
- Opened ???.
- Operated by ATNF.
- 6 dishes of 22-m diameter.
- 5 of the dishes can be moved along a 3-km track.
- Premier radio interferometer in the far south.

Jansky Very Large Array

- Near Socorro, New Mexico.
- Opened ~1980 (and recently greatly refurbished).
- Operated by NRAO.
- 27 dishes of 25-m diameter.
- Maximum baseline of 36km.
- Covers 74MHz to 50GHz range.
- Dishes transported along rails.
- Can reach 0.05 arcsec resolution at 7mm (~42GHz).
- The best interferometer on Earth (in many ways).



Giant Meterwave Radio

Telescope

- Near Pune, India.
- First light 1995.
- Operated by NCRA.
- Aperture synthesis interferometer.
- 30 dishes of 45-m diameter.
- Max baseline ~30km.
- Covers 50 I500MHz range.
- Can reach I arsec resolution at I.4GHz.
- A very powerful low-frequency radio interferometer.

Lovell

(at Jodrell Bank Observatory)

- Near Manchester, UK.
- Opened 1957.
- Operated by University of Manchester.
- 76-m dish.
- Formerly the largest dish in the world.
- Covers mostly I.3 I.6GHz range.
- Includes two 15-in bearings from WWII battleships.
- Resolution of I2 arcmin at I.4GHz.

Parkes

- Near Parkes, Australia.
- Opened 1961.
- Operated by ATNF.
- Second largest dish in Sourth.
- 13-beam multibeam receiver at 1.4GHz.
- Discovered ~half the known pulsars.
- Small master equatorial in center of telescope.
- Covers primarily 0.6 3GHz range.
- Resolution of 15 arcmin at 1.4GHz.

Green Bank

- Near Green Bank, West Virginia.
- First light 2000.
- Operated by NRAO.
- 100x110m dish.
- Offset feed cabinet.
- Largest steerable dish (and largest man-made movable object on land).
- "Active surface".
- Covers 300MHz 80GHz range.
- Can see $\sim 3/4$ of the sky (down to Dec = -40 deg).

Arecibo

"William E. Gordon Telescope"

- Near Arecibo, Puerto Rico.
- Opened in 1963.
- Operated by NAIC.
- 305-m dish.
- Largest non-movable dish in the world.
- Built in a natural karst depression.
- Observe -2 deg < Dec < +38deg.
- Resolution of 3 arcmin at I.4GHz.

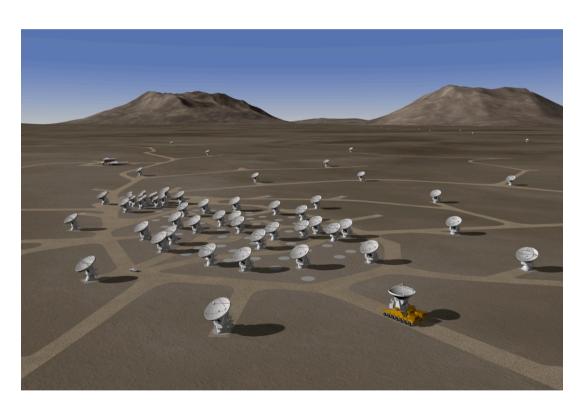
Effelsberg

- Near Effelsberg, Germany.
- Opened 1972.
- Operated by MPIfR.
- 100-m dish.
- Largest in world for 29 years.
- Paraboloid deforms in different positions.
- Angular resolution is 10 arcmin at 1.4GHz.


European VLBI Network

(EVN)

RadioAstron


(Space based)

- Russian built.
- Correlated with radio telescopes on Earth.
- Provides baselines of many Earth diameters.
- Imaging is in some cases impossible because of poor uvcoverage.
- Knowing the space-craft position is critical in the correlation process.

Atacama Large Millimeter Array (ALMA)

- Still coming online.
- Major step forward for (sub)millimeter interferometry.
- On the Atacama plateau in order to greatly reduce atmospheric absorption.
- Observing frequencies of 100s GHz up to THz.

The current landscape

The Culture of Radio Astronomy

- "Do it yourself" attitude still very present (both good and bad).
- Less "accessible" compared with other wavebands?
- Moving from more and more from small experiments to major facilities.
- The Square Kilometer Array will change both the science and the culture of radio astronomy.

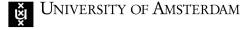
Major Institutes

- ASTRON: Netherlands Institute for Radio Astronomy
- MPIfR: Max Planck Institute for Radio Astronomy
- NCRA: National Center for Radio Astronomy

URSI

Union Radio-Scientifique Internationale / International Union of Radio Science

- Commission J is "Radio Astronomy.
- Activities to protect radioastronomical observations from interference.


Sources

NRAO: <a href="http://www.nrao.edu/index.php/learn/radioastronomy/

Wikipedia: http://en.wikipedia.org/wiki/Radio_astronomy

Other course slides (see links on course wiki page):

http://www.astron.nl/astrowiki/doku.php?id=uva_msc_radioastronomy_2017

Questions?

