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Introduction



Motivations

The probe of signals through Fourier measurements
is an acquisition strategy shared by various sensing techniques

in science and technology,
notably in astronomical and in biomedical imaging.
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I.
Radio interferometry

[1] A. R. Thompson, J. M. Moran, and G. W. Swenson Jr., “Interferometry and Synthesis in Radio Astronomy”. WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.

5



6

Radio interferometry will play a major role in future astronomical observations, 
always seeking for better resolution and sensitivity on wider fields of view.



Telescopes
* Artist impression of the international SKA project... Australia or South africa?

SKA. Courtesy Xilostudios.
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Basic inverse problem
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* Under standard assumptions, visibilities provide noisy and incomplete Fourier coverage 
of a planar signal.

❖ Visibilities for small field of view:

❖ Ill-posed inverse (deconvolution) problem from              complex noisy visibilities 
for           :

❖ For Gaussian noise, the data constraints for candidate reconstruction    reads in terms 
of a bound

  
❖ Signal reconstruction algorithms differ through their regularization scheme. Standard 
iterative deconvolution algorithm: CLEAN, a Matching Pursuit algorithm. 

x ∈ RN

M/2 < N

y ≡ Φx + n ∈ C(M/2) with Φ ≡ MFA ∈ C(M/2)×N .

χ2 (x̄;Φ,y) ≡
M�

r=1

�
(y − Φx̄)r

σ(r)

�2

< �2.

x̄

y(ki) = �Ax(ki).
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II. 
Compressed sensing

[1] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete 
frequency information,” IEEE Trans. Inf. Theory, vol. 52, pp. 489-509, 2006.

[2] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. 
Pure and Appl. Math., vol. 59, pp. 1207-1223, 2006.

[3] E. J. Candès, “Compressive sampling,” in Proc. Int. Congress Math, Madrid, 2006, vol. 3., pp. 1433-1452.

[4] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, pp. 1289-1306, 2006.

[5] R. Baraniuk, “Compressive Sensing,” IEEE Signal Process. Mag., vol. 24, pp. 118-12, 2007.

[6] D. L. Donoho, J. Tanner, “Counting faces of randomly-projected polytopes when the projection radically lowers 
dimension,”  J. Amer. Math. Soc., vol. 22, pp. 1-53, 2009.
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Compressed sensing aims at merging data acquisition and compression for 
sparse or compressible signals.

It provides a framework to go beyond Nyquist-Shannon sampling theorem.



* Consider linear measurements of a sparse or compressible signal...

Sparsity and sensing
11

❖ Signal and sparsity basis:                                           o.n., for            with    
non-zero or significant entries.
❖ Sensing matrix                from            real linear measurements.            
❖ Independent and identically distributed Gaussian noise           .

❖ Ill-posed inverse problem:

x ≡ Ψα ∈ RN with Ψ ∈ RN×N

M < N

α ∈ RN

Φ ∈ RM×N

y α

n

Φ Ψ

+=

Images: courtesy R. Baraniuk

y ≡ Θα + n ∈ RM with Θ ≡ ΦΨ ∈ RM×N .

n ∈ RM

K � N



* Randomness and incoherence are key for beating Nyquist-Shannon in reconstruction.

RIP and BP
12

❖  Restricted Isometry Property (RIP) of order    : there exists some           such that, 
for all             with    non-zero entries:

❖  With the RIP, accurate and stable reconstruction for the Basis Pursuit (BP) 
minimization problem seen as relaxation of “sparsity minimization”:

❖ Randomness in    and incoherence with   ensure the RIP at high probability, under a 
typical condition:                    , hence the terminology “compressed sensing” !

❖ Random selection of Fourier measurements would do it, i.e.                        :

                                       for mutual coherence                                     .

αK ∈ RN

K δK < 1
K

K ≤ cM

Nµ2 (F,Ψ) ln4 N
µ (F,Ψ) ≡ max

1≤i,j≤N
|fi · ψj |

Φ ≡ MF ∈ RM×N

ΨΦ

min
ᾱ∈RN

||ᾱ||1 subject to ||y −Θᾱ||2 ≤ �. (BP�)

(1− δK) ||αK ||22 ≤ ||ΘαK ||22 ≤ (1 + δK) ||αK ||22.

M ∝ K � N
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... Compressed sensing a posteriori justifies both the acquisition strategy 
(Fourier space is incoherent with real space) and the reconstruction procedure 

(CLEAN is equivalent to BP) used in radio interferometry.

But the theory goes much beyond, both at the level of acquisition and 
reconstruction...
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[Versatile regularization]

[1] Y. Wiaux, L. Jacques, G. Puy, A. M. M.  Scaife, and P. Vandergheynst, “Compressed sensing imaging techniques for radio 
interferometry,” Mon. Not. R. Astron. Soc., vol. 395, pp. 1733-1742, 2009.

[2] Y. Wiaux, L. Jacques, G. Puy, A. M. M.  Scaife, and P. Vandergheynst, “Compressed sensing for radio interferometry: 
prior-enhanced Basis Pursuit imaging techniques,” in Proc. INRIA SPARS'09 Conf., Saint-Malo, 2009, pp. 00369428.

[3] Y. Wiaux, G. Puy, and P. Vandergheynst, “Compressed sensing reconstruction of a string signal from interferometric 
observations of the cosmic microwave background,” Mon. Not. R. Astron. Soc., vol. 402, pp. 2626-2636, 2010.
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IV. 
Spread spectrum technique

[1] Y. Wiaux, L. Jacques, G. Puy, A. M. M.  Scaife, and P. Vandergheynst, “Compressed sensing imaging techniques for radio 
interferometry,” Mon. Not. R. Astron. Soc., vol. 395, pp. 1733-1742, 2009.

[2] Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst, “Spread spectrum for imaging techniques in radio interferometry,” 
Mon. Not. R. Astron. Soc., 2009, vol. 400, pp. 1029-1038.

[3] G. Puy, Y. Wiaux, R.  Gruetter, J.-Ph. Thiran, D. Van de Ville, and P. Vandergheynst, “Spread spectrum for 
interferometric and magnetic resonance imaging,” in Proc. IEEE Int. Conf. on Acoustic, Speech and Signal Process. 
(ICASSP), Vol. CFP10ICA-CDR (2010). IEEE Signal Process. Soc., 2802.
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What about the dependence of the signal reconstruction quality as a 
function of the sparsity basis (through the coherence)?



Setting up the problem...
* Fornax A radio emission around the elliptical galaxy NGC 1316.

Courtesy NRAO & Uson
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Original image: N = 512× 512



SNR = 0.278 dB

Setting up the problem...
* Reconstruction of the Fornax A radio emission around the elliptical galaxy NGC 1316.

Image: 
Simulated acquisition: 30 dB noise, random coverage of 10%
Reconstruction:       minimization problem (assumes sparsity of the gradient)
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N = 512× 512

TV�



Spread spectrum
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* The seeds for a modulation spreading the spectrum of the signal are present.

❖ In specific, and non-standard array configurations, a linear chirp modulation imprints 
the signal:

❖ The modulation amounts to a (norm-preserving) convolution in Fourier space, hence 
spreading the spectrum of the signal, hence decreasing the coherence:

y (ki) ≡
�

Dτ

C(w)(|τ |)Ax (τ ) e−2iπki·τ dτ ≡ �C(w)Ax (ki) ,

R
ea

l p
ar

t
Im

ag. part
C(w)(|l|) = eiπw|l|2

�C(w)Ax = �C(w) � �Ax.



(30 simulations per size and    )

 

 

0 0.2 0.4 0.6 0.8

A

L ∼ 1× 1 deg2

FWHM = 1 deg

x = ΓαΨ = Γ :

y = Θ(w)α + n

Simulations
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* Chain of visibility simulations for signals made up of 10 Gaussian waveforms:

M

M/2 ∈ [50, 1000]
N = 64× 64

F

30dB+ noise at 

M

C(w)

wL1/2/2 � B (constant)



Reconstruction results
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* Spread spectrum universality...

 

 

0 0.1 0.2 0.3 0.4 0.5

      reconstructionsBP�Spread spectrumAxOriginal signal           

= CLEAN



Reconstruction results
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* Spread spectrum universality...
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      reconstructionsBP�Spread spectrumAxOriginal signal           



Reconstruction results
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* Spread spectrum universality...

 

 

0 0.2 0.4 0.6 0.8

      reconstructionsBP�Spread spectrumAxOriginal signal           



Reconstruction results
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* Spread spectrum universality...

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4

      reconstructionsBP�Spread spectrumAxOriginal signal           



SNR = 21.8 dB

... Unveiling the mystery
* Reconstruction of the Fornax A radio emission around the elliptical galaxy NGC 1316.
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Image: 
Simulated acquisition: 30 dB noise, modulation, random coverage of 10%
Reconstruction:       minimization problem

N = 512× 512

TV�
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Conclusions



Take-home message

Compressed sensing approaches may lead to a drastic enhancement of the image 
reconstruction quality for radio interferometry...

by acting both at the acquisition and reconstruction levels.
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As an example: alter the acquisition to
spread the spectrum and optimize measurement incoherence... in practice, consider 
optimizing interferometer design to get large    on small fields of view, or consider 

large fields of view on the sphere (SKA, ...).
w



28

Extra-s



y = ΦΨα

min
ᾱ∈RN

||ᾱ||2min
ᾱ∈RN

||ᾱ||1

Why BP for sparsity?
29

❖ Geometrical argument...

Sparsity:

(sparsity promotion)

(data constraints with no noise)

(no sparsity promotion)

RN

α

α∗

α

α∗

α

*   -norm minimization promotes sparsity on the contrary of    -norm minimization...l1 l2

Images: courtesy R. Baraniuk



The constrained BP problem

is essentially equivalent to the MAP estimation

for a Laplacian prior    

min
ᾱ∈RN

||ᾱ||1 subject to ||y −Θᾱ||2 ≤ �

min
ᾱ∈RN

[||y − ΦΨᾱ||22 + λ||ᾱ||1]

π (ᾱ) ∝ exp[−λ�||ᾱ||1]

Why BP for sparsity?
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❖ Bayesian argument...

*   -norm minimization promotes sparsity on the contrary of    -norm minimization...l1 l2

Highly peaked,
heavily tailed,
i.e. sparsity promoting

π (ᾱ)



❖ On small fields of view         , the chirp rate is generally small and the spread 
spectrum negligible. Indeed, for a signal with band limit

a significant modulation requires a strong alignment of baseline in the pointing direction:

❖ This sub-optimality could be circumvented by considering large fields of view on the 
sphere, or if interferometers could be designed to optimize the baseline alignment!

Amending standard conditions
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* In practice the effect of the modulation may often be negligible...

B � (umax , vmax),

L� 1

wL1/2/2 � B i.e. w � (umax , vmax).



Another mystery...
* The magnitude of a real human brain image acquisition.

Courtesy OsiriX DICOM
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Original image: N = 512× 512



SNR = 1.69 dB

...
* Reconstruction of the human brain image.
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Image: 
Simulated acquisition: 30 dB noise, no modulation, acceleration by a factor 10
Reconstruction:       minimization problem

N = 512× 512

TV�



Image: 
Simulated acquisition: 30 dB noise, modulation, acceleration by a factor 10
Reconstruction:       minimization problem

SNR = 23.2 dB

... unveiled
* Reconstruction of the human brain image.
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N = 512× 512

TV�


