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High sensitivity imaging

• Sensitivity 

• Higher sensitivity is achieved using larger collecting area (∝N
ant

), 

wider band-widths (N
channels

) and longer integrations in time (N
t
)

• Data volume  ∝ N2
ant

 N
channels

 N
t

• Implications for high dynamic range imaging
• Wider field imaging required → finer sampling in time and frequency

• N
channels 

= 1-10GHz/MHz     and    N
t
 = 10hr/(1-10sec)

• Wider range of angles on the sky (==> Direction Dependence)

• Smaller scale variations over larger parameters space to be 
accounted for

• Algorithm efficiency remains a critical parameter

• 10-100x increase in the number of samples to achieve the required 
sensitivities

∝
N ant Aant N tN chan

T sys
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The EVLA

• 27-antenna array: 25m diameter, Az-El mount 

• Continuous frequency coverage from 1-50 GHz in 8 bands

• Bandwidth ratio (n
high

 :  n
low

) = 2:1

• Instantaneous bandwidth: 8 GHz (currently 2x1GHz)

• WIDAR Correlator: Upto 16K channels 

• Data rate: Currently ~12 Mbytes/s (512 channels)

– 350 GB/per typical observation (6hr)

• Sensitivity:  Thermal noise ~1 microJy/beam in ~1 hr.

→ Dynamic range of 106 for a 1 Jy point source
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• Measurement Equation

         

                                                 
                                                       :Direction independent gains

                                                       :Direction dependent (DD) gains

• Requirements: Full beam, full band, full Stokes imaging

• Wide-band, narrow field: Ignore

• Narrow-band, wide-field: Ignore frequency dependence of I

• Wide-band, wide-field: A-Projection + MS-MFS

• High dynamic range: All the above + DD solvers
– Time dependent pointing errors, PB shape change, etc.

• Combined RHS determines the “time constant” over 
which averaging will help

V ij
Obs

  = M ij  , t W ij∫ Mij
S
 s , , t  I  s ,  e2   bij . s d s

M ij  , t= J i , t ⊗ J j
∗
 , t 

M ij
S
 s ,  , t =J i s , , t ⊗J j

∗
 s , , t 

Synthesis Imaging

M ij
S
 s ,  , t 
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Examples of DD effects

Time and DD Primary Beam: EVLA Ionospheric Phase Screen
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Examples of DD effects

Time and DD Primary Beam: LWA Ionospheric Phase Screen
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Range of imaging challenges

Field with compact sources filling the FoV Compact + extended emission filling the FoV

Used mostly auto-flagging + some manual flagging
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• Time varying PB effects
• All frequencies:  Rotation with Parallactic Angle for El-Az 

mount antennas (GMRT, EVLA, ALMA)

• All telescopes: Pointing errors, structural deformation
– Projection effects (Aperture Array elements)

• Frequency and polarization dependence (most telescopes) 

• Heterogeneous antenna arrays

• Algorithm development approach taken

• Algorithm R&D (SNR per DoF, error propagation, computing 
requirements,...)

• Proof-of-concept tests with realistic simulations

• Apply to real data to test computing and numerical 
performance 

Dominant DD Effects
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Parametrized Measurement Equation

• Need more sophisticated parametrization of the ME
– Better parametrization of the J

i
 , J

i
S and the Sky (IM)

– Solver for the (unknown) parameters

– Forward and reverse transform that account for the DD terms

– Efficient run-time implementation

• Useful parametrization: 
– Which models the effects well and with minimum DoF

– For which efficient solvers can be implemented

– Which optimally utilizes the available SNR  

• Noise on the solved parameters: 

– Calculate Covariance matrix for 

 p=[ 2 kbT sys
a A N antcorrcorr NSolSamp ]

1
S

where S=∫
∂E i s , p 

∂ s
E j

∗
 s , p IM s e2 s . bij d s

V ij−V ij
M
pk , I

M
=ij
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• Scale-less deconvolution algorithms:

•                               :Treat each pixel as an independent DoF

• CLEAN (and its variants), MEM (and its variants)

I M=∑k
Akx− xk 

Deconvolution: Parametrization of the 
emission

Component Model Restored Model Residuals
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• Scale-sensitive deconvolution algorithms:

•                                         :Decompose the image in a scale-
sensitive basis

• Asp-Clean (A&A, 747, 2004 (astro-ph/0407225), MS-Clean (IEEE JSPSP, Vol. 2, 
No. 5, 2008)

I M
=∑k

Ak f Scale , Position 

Deconvolution: Parametrization of the 
emission

Component Model Restored Model Residuals
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Time varying DD gains due to PB

 

 I=PSF∗ I PB

 PB
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Wide-band PB effects

• Frequency dependence of the PB is a first order effect for wide-band 
observations

• Is it               or is it            ?

• Fundamental separation:  Include PB as part of the measurement 
process (include its effect as part of forward and reverse 
transforms)

PB “Spectral Index”

V  bij  = ∫M ij
S I  s e

2  bij . s d s

M  s ,  I  s , 
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Full beam imaging

• Limits due to the rotation of asymmetric PB

• Max. temporal gain variations @ ~10% point

• DR limit: few X 104:1

• Limits due to antenna pointing errors

• In-beam error signal max. @ 50% point

• DR limit: few X 104:1

• Limits for mosaicking would be worse
– Significant flux at half-power point

– Significant flux in the side-lobes for most pointing
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The A-Projection algorithm

• Modified forward and reverse transforms: 
• No assumption about sky properties

• Spatial, time, frequency and polarization dependence 

naturally accounted for

• Done at approximately FFT speed

• Combining with W-Projection or image plane part of the various deconvolution 
algorithms is straight forward (algorithm complexity is lower)

• Efficient solvers to solve for more precise parametrized models (Pointing SelfCal 
and its extensions)

V o
u , v , w=V M

u , v ∗G u , v ;Time , Poln.

A-Projection algorithm,  A&A 2008

Model for EVLA aperture illumination 
(real part)

One element of the Sky-Jones 
(Jones Matrix per pixel)
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A-Projection algorithm: Simulations 

Before Correction After Correction

Minimize :V ij
O
−Eij∗[ FI

M
] w.r.t. IM

A-Projection: Bhatnagar et al.,
A&A,487, 2008 

Goal:  Full-field, full-polarization imaging at full-sensitivity
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● 3C147 field at L-Band
with the EVLA

● Only 12 antennas used
● Bandwidth: 128 MHz
● ~7 hr. integration

● Dynamic range: ~700,000:1

EVLA L-Band Stokes-I: Before correction
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EVLA L-Band Stokes-V: Before correction

Is it  M  s , Poln ?
Or is it  I  s , Poln?
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EVLA L-Band Stokes-I: After correction

Use physical model for the 
Stokes-V pattern:

Contours: Stokes-I power pattern
Colour: Stokes-V power pattern
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Wide band imaging with the EVLA

PB 50% point

●1.2-1.8GHz

●~40 microJy/Beam

●RSRO Projects
 (AB1345, Bhatnagar et al. 
  AT374, Taylor et al.)

●Scientific goals
 Spectral Index 
       imaging
 RM Synthesis
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Wide band imaging with the EVLA

PB 50% point



23/32S. Bhatnagar: CALIM 2010, Dwingeloo, Aug. 24th 2010

3C147: Residual errors in full field

Smearing + W-Term errors!

Errors due to
Pointing errors?

Errors due PB
side-lobes?
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●Typical antenna pointing  offsets for VLA as 
a function of time 

●Over-plotted data: Solutions at longer 
integration time

●Noise per baseline as expected from EVLA

[Bhatnagar et al., EVLA Memo 84, 2004]

DD SelfCal algorithm: Simulations

Sources from NVSS.
Flux range ~2-200 
mJy/beam

Minimize :V ij
O
−Eij∗V ij

M w.r.t. Ei

[ ∂ Eij  p i
k , p j

k


∂ Ei

∂ Ei
∂ pi

k ]∗V ij
M=0
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●Typical solved pointing errors for a few 
antennas
●Solution interval: 2min

●Using ~300 MHz of bandwidth.  

[Bhatnagar et al. (paper in preparation)]

DD SelfCal algorithm: EVLA Data

IC2233 field in the 1-2 
GHz band with the 
EVLA

Minimize :V ij
O
−Eij∗V ij

M w.r.t. Ei

[ ∂ Eij  p i
k , p j

k


∂ Ei

∂ Ei
∂ pi

k ]∗V ij
M=0



26/32S. Bhatnagar: CALIM 2010, Dwingeloo, Aug. 24th 2010

● EVLA polarization squint solved as pointing error (optical pointing error).
● Squint would be symmetric about the origin in the absence of antenna servo pointing errors.
● Pointing errors for various antennas detected in the range 1-7 arcmin.
● Pointing errors  confirmed independently via the EVLA online system.

[paper in preparation]

DD SelfCal algorithm: EVLA Data

R-beam

L-beam

Pointing error
R-beam

L-beam

Pointing error

● El-Az mount antennas
● Polarization squint due to off-axis feeds
    - The R- and L-beam patterns have a pointing 
        error of +/- ~0.06
 

● DoF used: 2 per antenna
● SNR available for more DoF to model the PB shape



D

 p=[ 2kbT sys
a A N antcorrcorr NSolSamp ]

1
S

where S=∫
∂E i s , p 

∂ s
E j

∗
 s , p IM s e2 s . bij d s
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Computing load

• Scaling laws for imaging

• Non co-planar baseline correction

• W-Projection: (N2

wproj
+ N2

GCF
)N

VIS

• Faceting:        N2
facets

N2
GCF

N
vis

• Combine with Scale-sensitive deconvolution     

•   N
vis

: 1010-12   ,     N2
GCF

: 7-50 ,        N
comp

: 104-5 
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I/O load

• Near future data volume (0-1 years)

• Recent data with the EVLA: 100-500 GB

• Next 5 years

• 100X increase (in volume and effective I/O)

• Non-streaming data processing

• Expect 20-50 passes through the data (flagging + calibration + 
imaging)

• Effective data i/o: few TB

• Exploit data parallelism 

• Distribute normal equations (SPMD paradigm looks 
promising)

• Deploy computationally efficient algorithms (‘P’ of SPMD) on a 
cluster
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Computing challenges

• Calibration of direction dependent terms

• As expensive as imaging 

• Significant increase in computing for wide-field wide-band imaging

• E.g. convolution kernels are larger (up to 50x50 for single facet EVLA 
A-array, L-band imaging)

• E.g. Multiple terms for modeling sky and aperture for wide-band 
widths

• Terabyte Initiative: 4K x 4K x 512 x 1Pol tests using 200 GB data set

• Timing
• Simple flagging               : 1h

• Calibration (G-Jones)     :  2h15m

• Calibration (B-Jones)     :  2h35m

• Correction                      :  2h

• Imaging                          :  20h

• Compute : I/O ratio          : 2:3
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Parallelization: Initial results

● Continuum imaging:  (No PB-correction or MFS)

● Requires inter-node I/O (Distribution of normal equations)

● Dominated by data I/O

● 1024 x 1024 imaging: (Traditional CS-Clean; 5 major cycles)

● 1-node run-time       :      9hr
● 16-node run-time     :      70min (can be reduced up to 50%)

                                            :       60min (MS-Clean)
                                                            (residual CPU-power available for projection algorithms)

●   Imaging deconvolution is most expensive step
●   DD Calibration as expensive as a deconvolution major-cycle

● CPU bound (a good thing!) 

[Golap, Robnett, Bhatnagar]
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Parallelization: System Design

● Matching data access and in-memory grid access patterns is critical
● Optimal data access pattern for imaging and calibration are in 

conflict
● Freq-Time ordered data optimal for imaging
● Time-ordered data optimal for calibration

● SS deconvolution + MFS might make FLOPS per I/O higher: A good 
thing!

● Production Cluster
● 32 nodes, 2x4 cores, 12 GB RAM, InfiniBand
● Data served via a Luster FS

● Measured I/O throughput: 800-900 MB/s

● Multiple processes per node gets I/O limited
● I/O handler separated from compute processes
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General comments

● Algorithms with higher Compute-to-I/O ratio
● Moor's law helps

● Pointing SelfCal and MS-MFS solutions demonstrate the need for 
minimizing the DoF per SNR (?)

● Exact solutions in most cases is a mathematical impossibility
● Iterative solvers are here to stay: Image deconvolution, calibration
● Baseline based quantities are either due to sky or indistinguishable from 

noise.  
● Modeling of calibration terms is fundamentally antenna-based

● Data rate increasing at a faster rate than i/o technology
● Moor's law does not help!

● Moving 100s of GB EVLA data can take up to a weak
● More time spent in i/o-waits than in computing

● Need for robust algorithms for automated processing that also benefit 
from and can be easily parallelized

● Need for robust pipeline heuristic
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