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Propagation of EM waves

Born & Wolf, Principles of Optics, 1980 ASTRON

Spatial correlation between g, and q, due to

1. common origin p,

2. common origin p,

3. coherence between field g, from p_and q_ from p,

4. coherence between field q, from p_ and q, from p,
P, D, P, P, P, P, P, p,
Y Y L J L
q, q, q, q, q, q, q, q,
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The origin of spatial coherency

Born & Wolf, Principles of Optics, 1980 ASTRON

Spatial coherency in aperture plane

. .. p, p, P, p,
» Signal from common origin
 Mechanisms 1 and 2
Y Y
9, 9, 9, 9,
Spatial coherency in focal plane ] ] ] ,
e Spat. coh. in aperture plane 1 2 1 2
* |Imperfect focus
« Mechanisms 3 and 4 v v
9, 9, q, 9,
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Spatial coherency in the focal plane

Cornwell & Napier, Radio Science, 1988 ASTRON

Physical relevance of spatial coherency

e Qut of focus b, e b, b

e Aberrations 9 q, 9,

Focal Plane Fleld
From Point Source

Due to Primary

— Diffraction

Due to Aberration

- Imperfect reflector L T

- atmo-/tropo-/ionosphere

- " Diameter D
= |~_ Aberration

Diameter d

Image: Cornwell & Napier
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Generic model of a phased array

Ivashina, Maaskant & Woestenburg, IEEE AWPL, 2008
Ivashina et al., IEEE TrAP, 2010, accepted ASTRON

E(r, t) |nC|dent f|e|d i x-oriented antenna elements E y-oriented antenna elements i
E,E  u-and v-component Y Y Y Y Y Y i
Y, output voltage vector ’ |

w_,w_  BF weights

BF output voltages
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Optimal polarimetric calibration (1)

Warnick, Jeffs, Ivashina, Maaskant & Wijnholds, Phased Array
Workshop, April 2010 AST(QON

v,V  voltage response to pure u- or v-polarized signal
Assume: V =[v , v ] is known
BF output covariance matrix: W"(R_+R )W
where W =[w , w ]
R_is the signal covariance matrix
R is the noise covariance matrix
We want to: 1. minimize the noise: argmin, W R W

2. preserve polarization: WV = |
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Optimal polarimetric calibration (2)

Warnick, Jeffs, lvashina, Maaskant & Wijnholds, Phased Array
Workshop, April 2010 AST(QON

Steps to solution
 Reformulate using Lagrange multipliers
 Take derivatives and set them to zero

« Use contraint to find Lagrange multipliers
Solution
W = Rn'1 V (V" Rn'1 V)’

Interpretation
 Maximum sensitivity beam former

» Correction for optimal polarimetric fidelity
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Practice (1): subspace method

Veidt, Phased Array Workshop, April 2010 AST(QON

Problem: unknown v and v

Calibration on an unpolarized source:

e ON SOurce measurement: ROn = RS + Rn
o Off source measurement: ROff = Rn
e R=R —-R
S on off
« Find dominant eigenvectors \J and v,

—_ -1
« W=R"[v,v]
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Practice (2): interpreting eigenvectors

Wijnholds, lvashina, Maaskant, Warnick & Jeffs, TrAP, in prep. AST(:{ON

Eigenvectors are orthogonal, v_and v_need not be

— generally no one-to-one correspondence

Internal check

 Dominant eigenvalues: A, =0 (1% @)
» 9=V "V /v [l [lv]l

» Difference eigenvalues gives degree of orthogonality

Comparison with optimal method on poster lvashina et al.
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Practice (3): polarimetric requirement

Wijnholds, lvashina, Maaskant, Warnick & Jeffs, TrAP, in prep. AST(:{ON

v _and v _span the same subspace as v, and v,
—[v,v]=[v,v]T

—R_=[v,V]A [v1,v2]H =VT'AT"V ' =vTT"V"
VT T 'Vi=vTUuU"T"V"

— T' (and T) only known to a unitary matrix U

Physical significance:

» polrotation: rotation [Q, U, V]-vector in [Q, U, V]-space
* polconversion: conversion from | to [Q, U, V]

We need two distinctly polarized calibrators!
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Practice (4): bi-scalar calibration

ASTRON

 Max-SNR BF for u- and v-array (separately)
* Pros

— Allows full calibration on unpolarized source
- Clear physical meaning of BF outputs
- No unitary ambiguity at feed level

e Cons

- Unitary ambiguity not solved but postponed
- Needs identical polarimetric element response
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Calibration of aperture arrays (1)

ASTRON

Optimal method is single source method
— problem: it does not work for aperture arrays!
Reason: multiple source in FoV (21T sr)

Problem formulation:
e = argmine IIRobs - F{model(e)”Fz

where the parameter vector 0 includes, a.o.,
 electronic element gains (direction independent)
» apparent source Stokes vectors (direction dependent)
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Calibration of aperture arrays (2)

Wijnholds, Ph.D. thesis, TU Delft, 2010 AST(QON

Weighted alternating least squares (WALS):

1. initialize sky model using prior knowledge

2. estimate direction independent element gains
Wijnholds & Van der Veen, TrSP, Sept. 2009

3. estimate apparent source Stokes vectors (DDEs)
Wijnholds, Ph.D. thesis, TU Delft, 2010

4. estimate noise covariance matrix
Wijnholds & Van der Veen, EuSiPCo, Aug. 2009

5. repeat 2 — 4 until convergence
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Bi-scalar vs. full pol. calibration

ASTRON

Comparison of results with LBA-outer CS001 data

June 7, 2010, 14:00h 2 x X )

freq.: 45.3 MHz ST I B
BW: 195 kHz o L
integration: 1 s g 0-506 O . N gx )
blue: x-elements g YT v L, 0
magenta: y-elements 9 ¢ -
circles: bi-scalar o x

crosses: full-pol % 0 2w @ 5
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Observed Stokes vectors

ASTRON

DDEs included in apparent source Stokes vectors
= J1 EO JZH

— E
app

— most sources are unpolarized, so EO = |

=J JH=J uutyr

—S E
app

— Polrotation and polconversion strike again!

Unitary ambiguity in each probed direction (source)
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Understanding its implications ASTRON

Scalar analog

e 21T phase ambiguity

e can be resolved by phase screen if enough sources
 leaves (irrelevant) common phase ambiguity

wrong phase screen solution

wrong phase screen solution

proper phase screen solution

wrong phase screen solution
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Resolving the unitary ambiguities

ASTRON

fit polarimetric model of DDEs

» atmo-/tropo-/ionospheric distortions

 beam patterns

e efc.

reduction to common ambiguity if enough sources

problem: common unitary matrix is physically significant

— It should be determined

— we need two distinctly polarized sources per
FoV per snapshot!
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Conclusions

ASTRON

Phased array feeds

e optimal method provides bench mark

» practical methods: eigenvector and bi-scalar

» see poster MVI et al. for comparison

 calibration on unpol. sources gives unitary ambiguity
— two measurements on distinctly polarized sources

Aperture arrays

 full polarization multi-source method

* needs sufficient sources within FoV for interpolation

* needs two polarized sources within FoV in snapshot
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