

MeerKAT Online Data Storage

Thomas Bennett

CALIM 2010

 Overview of Current Effort

● Experimenting with HDF5 and CASA Tables Python
tools.

● Understand how efficient they are by doing some
comparisons based on speed and usability.

● Getting data to disk: start using and understanding
underlying tools – such as MPI-IO and parallel file
systems.

● Need to make sure that we can meet the MeerKAT
requirements for the online data store.

● KAT-7 telescope is a good opportunity to test out some
of these technologies while data rates are low.

 MeerKAT Data Rates

 Online Storage Data Rates

● Expected data rates to online data storage:
● 65536 frequency channels
● 2080 baselines (incl auto correlation data)
● 4 Stokes
● complex data type (8 bytes)
● ~ 4160 MB / correlator dump

● Predicted data storage requirements:
● 10 PB / year for the intermediate data product

from the online system

 MeerKAT Online Data Storage

 Parallel HDF5

● First cut of an implementation of a parallel write
to an HDF5 dataset, written in C.

● This implementation has been tested on a basic
cluster, consisting of 2 nodes which which write
data to a Lustre parallel file system.

● Although this has been a good learning
experience, there is still a lot that needs to be
understood in terms of 'tuning' at the software
layers.

 Parallel HDF5

Example code:

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, corr_id, memspace, filespace,
plist_id, data);

H5Pclose(plist_id);

 Python Tools: Overview

● Python implementations investigated so far:
● pyrap python wrapper for casacore
● h5py python wrapper for hdf5 (pytables to follow)
● netCDF4 python wrapper for netCDF4

● Since most of the heavy lifting should be done in
wrapped libraries, python overhead should be
minimal.

Python Tools: Examples

Accessing data from h5py high level API:

 dset[0:ts, chan, 0:blines]

Accessing data from h5py low level API:
 dataspace.select_hyperslab(start=(0,chan,0,),

count=(ts,1,blines,))

 memspace = h5s.create_simple((ts,blines))

 hd = np.empty((ts,blines,), dtype=np.complex64)

 dset.id.read(memspace, dataspace, hd, tid)

Python Tools: Test Descriptions

● Small row access (~ 700 MB): all frequency
channels and all baselines for one time stamp
(contiguous read).

● Large row access (~ 6 GB): all frequency
channels and all baselines for one time stamp
(contiguous read).

● Column access (~ 80 MB): 1 freq channel and all
baselines for all time stamps (strided read)

Python Tools: Results

raw h5py high API h5py low API

small contiguous
data read

215 - 250
MBps

28 MBps 150 MBps

large contiguous
data read

215 - 250
MBps

24 MBps 155 MBps

column access 35 - 140
MBps

 0.8 MBps 2 MBps

 High Level Tools: Observations

● When opening HDF5 data group in a file of
significant size can take up to 10 minutes.
● High level numpy slicing interface to h5py data
slow and unoptimised for large data sets. Rather
use low lever interface.
● None of the Python HDF5 interfaces currently

support the MPI-IO driver.
● HDF5 - chunk size set to 8 bytes (size of

np.complex64)

 Future Work

● High level tools:
● Compare pyrap and h5py. Also compare with C

level implementations.
● Investigate pytables HDF5 implementation and

compare to h5py.
● Lustre scaling tests on CHPC Sun cluster attached to a

Lustre file system and performance tuning –
HDF5/MPI-IO/Lustre

● Continue communications open with ASTRON people
involved in the data storage and archiving.

● Keep an eye on pNFS as it matures.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

