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 Overview of Current Effort

● Experimenting with HDF5 and CASA Tables Python 
tools.

● Understand how efficient they are by doing some 
comparisons based on speed and usability.

● Getting data to disk: start using and understanding 
underlying tools – such as MPI-IO and parallel file 
systems.

● Need to make sure that we can meet the MeerKAT 
requirements for the online data store. 

● KAT-7 telescope is a good opportunity to test out some 
of these technologies while data rates are low.
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 Online Storage Data Rates

● Expected data rates to online data storage:
● 65536 frequency channels
● 2080 baselines (incl auto correlation data)
● 4 Stokes
● complex data type (8 bytes)
● ~ 4160 MB / correlator dump

● Predicted data storage requirements:
● 10 PB / year for the intermediate data product 

from the online system
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 Parallel HDF5

● First cut of an implementation of a parallel write 
to an HDF5 dataset, written in C.

● This implementation has been tested on a basic 
cluster, consisting of 2 nodes which which write 
data to a Lustre parallel file system.

● Although this has been a good learning 
experience, there is still a lot that needs to be 
understood in terms of 'tuning' at the software 
layers.



  

 Parallel HDF5

Example code:

plist_id = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);

status = H5Dwrite(dset_id, corr_id, memspace, filespace, 
plist_id, data);

H5Pclose(plist_id);



  

 Python Tools: Overview

● Python implementations investigated so far:
● pyrap python wrapper for casacore
● h5py  python wrapper for hdf5 (pytables to follow)
● netCDF4 python wrapper for netCDF4 

● Since most of the heavy lifting should be done in 
wrapped libraries, python overhead should be 
minimal. 



  

Python Tools: Examples

Accessing data from h5py high level API:  

  dset[0:ts, chan, 0:blines]

Accessing data from h5py low level API:
  dataspace.select_hyperslab(start=(0,chan,0,), 

count=(ts,1,blines,))

  memspace = h5s.create_simple((ts,blines))

  hd = np.empty((ts,blines,), dtype=np.complex64)

  dset.id.read(memspace, dataspace, hd, tid)



  

Python Tools: Test Descriptions

● Small row access (~ 700 MB): all frequency 
channels and all baselines for one time stamp 
(contiguous read).

● Large row access (~ 6 GB): all frequency 
channels and all baselines for one time stamp 
(contiguous read).

● Column access (~ 80 MB): 1 freq channel and all 
baselines for all time stamps (strided read)



  

Python Tools: Results

raw h5py high API h5py low API

small contiguous 
data read

215 - 250 
MBps

28 MBps 150 MBps

large contiguous 
data read

215 - 250 
MBps

24 MBps 155 MBps

column access 35  - 140 
MBps

 0.8 MBps 2 MBps



  

 High Level Tools: Observations

● When opening HDF5 data group in a file of  
significant size can take up to 10 minutes. 
● High level numpy slicing interface to h5py data 
slow and unoptimised for large data sets. Rather 
use low lever interface.
● None of the Python HDF5 interfaces currently 

support the MPI-IO driver.
● HDF5 - chunk size set to 8 bytes (size of 

np.complex64)



  

 Future Work

● High level tools: 
● Compare pyrap and h5py. Also compare with C 

level implementations.
● Investigate pytables HDF5 implementation and 

compare to h5py.
● Lustre scaling tests on CHPC Sun cluster attached to a 

Lustre file system and performance tuning – 
HDF5/MPI-IO/Lustre

● Continue communications open with ASTRON people 
involved in the data storage and archiving.

●  Keep an eye on pNFS as it matures.
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