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The Mythical Thermal Noise

• “We want to integrate down to the thermal noise level”
• The ideal radiometer equation gives this level as

σP ∝
P√
K

(Dicke, 1946),

where P is expected power and K is number of
measurements (time-bandwidth product Bτ for
continuous-time signals)

• This is actually the (standard) RMS error of the sample
variance estimator P̂ = 1

K ∑K
k=1 x2

k — size of statistical
fluctuation of power measurement (Dicke)

• Purely a result of measuring on a finite sample



Studies of Visibility Statistics

Kulkarni (1989)
• Self-noise: Strong sources show same statistical fluctuations

as strong receiver noise — it’s the total received power that
matters in radiometer equation

• For strong sources, visibilities are correlated (especially on
baselines with shared antenna)

• Statistics of images and triple products
Gwinn (2001, 2004, 2006)

• PDF for product of correlated Gaussian variables (scalar)
• Effect of quantisation on this PDF



It’s All About Covariance Matrices
• Describe instantaneous real samples from N antennas by

N-dimensional zero-mean Gaussian random variable (RV)
x ∼ NN(0, R) with (true) covariance matrix R and PDF

p(x) =
1

(2π)−N/2|R|1/2 exp
[
−1

2
xHR−1x

]
• Correlator calculates sample covariance matrix

S ,
1
K

K

∑
k=1

xkxT
k

by multiplying and adding K of these vectors per dump
• Can also define unnormalised scatter matrix

W , KS =
K

∑
k=1

xkxT
k



Sample Covariance Matrix

• Visibilities are not independent measurements, but
elements of a matrix

S =


s11 s12 s13 · · · s1N
s21 s22 s23 · · · s2N
s31 s32 s33 · · · s3N
...

...
...

. . .
...

sN1 sN2 sN3 · · · sNN


(measured visibilities in blue, autocorrelations in red)

• S has structure (symmetric, positive semi-definite)
• Instead of statistics of individual visibilities, rather

consider statistics of S (or W) as a whole



The Real Wishart Distribution

• It’s old news... (Wishart, 1928)
• W ∼ WN(K, R) has real Wishart distribution, with K degrees

of freedom, scale matrix R and PDF

p(W) =
|W|(K−N−1)/2

2NK/2ΓN(K/2)|R|K/2 exp
[
−1

2
tr(R−1W)

]
,

where

ΓN(K/2) = πN(N−1)/4
N

∏
i=1

Γ [(K− i + 1)/2]

is multivariate gamma function
• Wishart is sampling distribution of covariance matrix, just

like χ2 is sampling distribution of scalar variance



When Does This Matter?

Two important limits for radio astronomy:
• The large-sample limit: K� 1

Wishart becomes Gaussian, i.e. vec S ∼ NN(vec R, RR)
with covariance between visibilities RR ∝ 1/K

• The weak-source limit: R ≈ diagonal
Visibilities become uncorrelated

• “Thermal noise” is usually uncorrelated and Gaussian. . .
Wishart therefore more relevant for smaller K (fast dump rates,
narrow-band channels) and stronger sources — low-frequency
instruments?



The Bartlett Decomposition

• More efficient way to generate random matrices from
Wishart distribution than brute force via Gaussian RVs

• If W ∼ WN(R, K), then W = LTTTLT

• L is lower triangular matrix so that R = LLT (Cholesky
decomposition of R)

• T is random lower triangular matrix with elements

T =



√
c1 0 0 · · · 0

n21
√

c2 0 · · · 0
n31 n32

√
c3 · · · 0

...
...

...
. . .

...
nN1 nN2 nN3 · · · √cN


where ci ∼ χ2

K−i+1 and nij ∼ N (0, 1)



From Real to Complex

• Classical optical coherence theory represents real field by
complex analytic signal to simplify the maths

• View N-dimensional complex RV x = Re x + j Im x
as 2N-dimensional real RV y = [Re x, Im x]T

• Real covariance matrix E
[
yyH] has 4N2 real elements, but

complex covariance matrix R = E
[
xxH] only has 2N2 real

elements — y is more general than x!
• The missing elements are in the complementary (pseudo)

covariance matrix (also known as relation matrix)

C , E
[
xxT
]

• C is N×N, complex and symmetric (not Hermitian)



Proper Complex Random Vectors

• Complex RV x is proper (or circular) if C = 0 — all
second-order information contained in R

• An equivalent definition is that real covariance matrix
have the constrained form

E
[
yyH

]
=
[

Re R − Im R
Im R Re R

]
• Yet another way to state it:

E
[
Re x Re xT

]
= E

[
Im x Im xT

]
E
[
Re x Im xT

]
= −E

[
Re x Im xT

]T

• For each element of x, real and imaginary parts have same
variance and are uncorrelated



Proper vs Improper

Let x(n) be a discrete-time real stationary bandpass signal.

The following complex signals are proper:
• Complex analytic representation of x(n) (vCZ is OK!)
• Complex envelope of x(n)
• Discrete-time Fourier transform of x(n)

The following complex signals are improper:
• x(n) itself (because C = R 6= 0)
• FFT of length-N vector x taken from x(n)

(asymptotically proper as N → ∞ and FFT→ DTFT)



FX Correlator Example

• F-step does FFT on blocks of 2N real voltage samples,
producing N complex spectral samples per block

• Spectral channels 0 and N are always real and therefore
improper — another reason to discard these. . .

• The rest of the channels are asymptotically proper as
M→ ∞ — check propriety for small M though

• Polyphase filterbank in front of FFT does not change this



Complex Gaussian Distribution

• The N-dimensional RV x ∼ N C
N (m, R) has a complex

Gaussian distribution if the corresponding 2N-dimensional
RV y is Gaussian and x is proper

• PDF is straightforward extension of real one:

p(x) =
1

πN|R| exp
[
−(x−m)HR−1(x−m)

]
(only valid if x is proper!)

• Has maximum entropy among distributions with same m
and R



The Complex Wishart Distribution

• Let x ∼ N C
N (0, R) and form scatter matrix W = ∑K

k=1 xkxH
k

• W ∼ WC
N(K, R) has complex Wishart distribution with PDF

p(W) =
|W|K−N

Γ̃N(K)|R|K
exp

[
− tr(R−1W)

]
,

where

Γ̃N(K) = πN(N−1)/2
N

∏
i=1

Γ(K− i + 1)

is complex multivariate gamma function
• Similar properties to real Wishart, e.g. if W ∼ WC

N(K, R),
then AWAH ∼ WC

N(K, ARAH) for any full-rank matrix A
• Even nicer: recursive formula to write down moments of

any order (Letac & Massam, 2004)



Some Moments of Complex Wishart

• Let elements of S = 1
K W be sij and those of R be rij

• Mean visibility: E
[
sij
]

= rij

• Correlation between arbitrary visibilities:

E
[
sijskl

∗] = rijrkl
∗ +

1
K

rikrjl
∗

• Covariance between arbitrary visibilities:

E
[
(sij − rij)(skl − rkl)

∗] =
1
K

rikrjl
∗

• Variance of visibility:

E
[
|sij − rij|2

]
=

1
K

riirjj

→ Thermal noise level!



Closure Statistics

• Closure phase is angle of triple product sijsjkski

• Closure amplitude is
∣∣(sijskl)/(siksjl)

∣∣
• Wishart moments are useful to characterise these
• E.g. Mean of triple product (autocorrelations in red):

E
[
sijsjkski

]
= rijrjkrki +

1
K
(
riirjkrkj + rjjrikrki + rkkrijrji

)
+

1
K2

(
riirjjrkk + rjirkjrik

)
• Variance of triple product straightforward but tedious to

write down. . .



Applications

• Good theoretical model
• Fancy thermal noise generator (full polarisation!)
• Detect deviation from visibility model via likelihood test
• MAP estimation: we have p(S|R), turn it around to form

p(R|S) via P(R), for which convenient conjugate prior is
available



Appendix: Wishart Generator
import numpy as np
import sc ipy . s t a t s

def complex wishart (R , df , s i z e = 1 ) :
””” Generate random matr ices from complex Wishart d i s t r i b u t i o n .
R −− True covar iance matrix , of shape ( dim , dim )
df −− Degrees of freedom
s i z e −− Number of random matr ices to generate
Returns sequence of random matr ices as complex array S , of shape ( s ize , dim , dim )
”””
# Obtain d imens i on o f c o v a r i a n c e mat r i x
dim = R . shape [ 0 ]
# Pre−a l l o c a t e t h e s e q u e n c e o f o u t pu t m a t r i c e s
S = np . zeros ( ( s ize , dim , dim ) , dtype=np . complex128 )
# Do C h o l e s k y d e c o m p o s i t i o n o f c o v a r i a n c e mat r i x
L = np . l i n a l g . cholesky (R)
# Load d i a g o n a l e l e m e n t s with s q u a r e r o o t o f ch i−s q u a r e v a r i a t e s ( a . k . a . c h i v a r i a t e s )
for n in xrange ( dim ) :

S [ : , n , n ] = sc ipy . s t a t s . ch i . rvs (2 * ( df − n ) , s i z e = s i z e )
# Obtain a l l l o w e r t r i a n g l e i n d i c e s
lower = np . t r i ( dim , k=−1). r a v e l ( ) > 0
nlow = len ( lower )
for m in xrange ( s i z e ) :

# Load l o w e r t r i a n g l e wi th s t a n d a r d complex Gauss ian RVs
S [m] . r a v e l ( ) [ lower ] = np . random . randn ( nlow ) + 1 . 0 j * np . random . randn ( nlow )
# Trans form B a r t l e t t d e c o m p o s i t i o n f a c t o r by C h o l e s k y f a c t o r
LT = np . dot ( L , S [m] )
# F i n a l l y form Hermit i an mat r i x
S [m] = 0 . 5 * np . dot ( LT , LT . con j ( ) . t ranspose ( ) )

return S
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