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Introduction

The scientific goals of new radio arrays (e.g. LOFAR & SKA) require extreme sensitivity
and dynamic range (e.g. LOFAR EOR)

Calibration challenges:
* Accuracy of calibration algorithms becomes crucial for achievement of scientific goals

*The large number of data requires fast algorithms

output noise
“Input noise”
== Calibration process +
Noise of the calibration algorithm
“solver noise”

Input noise
“Instrumental noise”
“Sky noise”
IIRFIII

. The aim is to devise new calibration methods which minimize the solver noise
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Initial assumptions
Calibration problem modeling

Initial assumptions

Radio frequency sky is
decomposed to K separated
sources far away from the array

Calibration problem modeling <

Hamaker-Bregman-Sault, 1996.

Jones matrix: describes amplifier
gains, beam shapes, ionospheric
effects, and etc

XX XY

i=1

Measured visibility

ﬁ:—-:‘!l.'

ntation

K
_ YX YY - =Vpg = EJP‘@)C'J;(') + Npq

Every antenna
has dual
polarized feeds 'Y

Baseline pq

Coherency: describes polarization
state of the source i

Noise matrix of
the baseline pq

\

Vectorized form

K

é y=28§(3)+n; anM(U:H}
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I o clusions and future work
The LS, EM, and SAGE algorlthms

The Least Squares (LS, Normal) calibration method (arps, atps++, casa)

Levenberg Marquardt
6" = 0" — (Vov ¢(6) + AH) "' (0) g

K
0 — arg min [ly — 3 s,(0)|
¢ i=1 technique
*Easy to program
But,
*Heavy computational cost of O((KN)?)
*Slow rate of convergence

Feder and Weinstein, 1988.
Expectation Maximization (EM) algorithm

Y : Observed data logfy(y; @) = E{logfx(x;:@)|Y =y;0"} — E{logfxjy=y(x;8)|Y = y; 8}

X : Complete data T
@ : Parameter value /
Jensen’s inequality: this expected value
Ex|v=yer{logL(6)} will be decreased forall @ 8"
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The Least Squares (LS, Normal) calibrat
Expectation Maximization (EM) algorith
Space Alternating Generalized Expectatioz
Maximization algorithm (SAGE)

Expectation-Step: Compute the expected value of the log-likelihood function, with respect to
conditional distribution of the complete data X given observed data y under the current

parameter estimate @%

Maximization-Step: Maximize the log-likelihood with respect to @

Assuming that the contribution

Yatawatta et al. 2009, Kazemi et al. in prep.
of source i depends only on a subset of parameters #; and

partitioning the parameter vector as 8 — [0T 85 ...0%|T,

x; =5:(0;) +m, forie{l,2,...K}
n; ~ N(0, GII)

Fessler and Herro, 1994.

Space Alternating Generalized Expectation Maximization (SAGE) algorithm

e Dedicating whole the noise to only one source

« Utilizing the EM algorithm
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Expectation Maximization (EM) algorith
Space Alternating Generalized Expectation ';

Maximization algorithm (SAGE)

" Conclusions and future work
Yatawatta et al. 2009, Kazemi et al. in prep.

E- Step: /" = B{xyly,0"}

M- Step: min ¢;(0;) = ||[;': —s,-(ﬂ.-)](ll)_i"z
i

K
X' =5(00) +n b |y =x'+ > 5i(6))
=1

Advantages of the EM algorithm over the Normal algorithm:
*Breaking the likelihood maximization into smaller computational steps
*Computational cost equal to KO(N?)

;T =07 — (Vo, Vo, #1(0:) + XHi) ' 7p,64(0))|gp  fori € {1,2,...,K}

*Increasing the likelihood at each iteration step

*Improving the speed of convergence compared with LS calibration

But still,

*Possibility of converging to a local optimum

sImplementation of the algorithm is complicated compared with LS method

Additional advantages of using the SAGE algorithm:
*Improving the speed of convergence
sImproving the accuracy of calibration results
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Solver noise

Initial assumptions

The goal is to minimize the “distance” between the real gains
and calculated solutions = Minimizing the solver noise

Xqs+= gain solutions for the source s at the antenna g4
Xq.s

* Sky noise for two different directions is uncorrelated
* Thermal noise for any number of directions from the same station is the same
* Solver noise is the same for all stations and directions

Kullback-Leibler Divergence (KLD)

f(x)

KLD = x)log——

(£,9) Ex:f( Mog' s

The higher KLD between two different sources solutions at the same antenna, the solver noise is less

*We fit a Gaussian mixture model to the solutions by EM algorithm
*KLD is calculated via Monte-Carlo algorithm
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Likelihood Ratio Test (LRT)

Null model: Independent solutions for different sources for the same antenna
Alternative model: Dependent solutions for different sources for the same antenna

A=

ol Likelihood for null model
Likelihood for alternative model

X2 Probability of accepting null model
rather than alternative model

A

The less LRT between two different sources solutions at the same antenna, the solver noise is less
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Conclusions and future work

Illustrative example

One channel simulated observation of three sources by fourteen antennas

 ———————— N T . . ]
0 b 10 16 20 25 20 2% 44 20 0 20 49 &0 & 100 120
Clean image Image having gain errors and

white Gaussian noise

el —

ﬂtatim—in' CALIM

- ““. Page10




Comparison between the SAGE and
the Normal calibration algorithms

CAGiiipacT

ure work

Residual Errors
NORMAL, 9 iterations

STD=1.2179
STD=1.2186
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Comparison between the SAGE and
the Normal calibration algorithms

CasA, SAGE Algorithm CasA, Normal Algorthm

Cygﬁ SNSE ﬁlg-:-nthrn Cygﬁ, Normal Ng orlthrn
Yatawatta et al. 2009.




Conclusions:

*The SAGE algorithm is superior in terms of accuracy and speed of convergence
*The non-linear problem requires suitable regularization

*The KLD and the LRT could be used to study the influence of solver noise

Future work:

A w o~ e A

*Study different regularization methods
sImplement different noise models
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Detection solver noise via KLD and LRT

TNof4E Eadabitatabion
Solutions of antenna seven are given sin(f) noise where t is integration time
Real Solutions Solution added sin(t) noise

140y

1607 “*-Seurees A & B "
yopp""*E0uree A & 8 .
140 & 8ourpes 4 & B 1
kil L |

*§gurees B & B

[, Ao, A "A"\. )

] P Taadl 2 * 2 '.,. ""l'!"""- S .
¥ ;:- - r;--,“-_tbé--:;iﬁ")_'-?.f:-; ¥ ”MAE;% ...._-—"r
L L -
~— 1 1
-;" ——l ] E
i J
Antgana Re:

July 2010

| ——




. Simulation
Measurement equation Direction dependent gains
d SAGE algorithms Detecting solver noise via KLD and LRT

pise in solutions

nh oxvamnla

CAGiIipaT

Illustratlve example e

L= e 7 a _.l.. - - EEg—— . | — r_ 3 = -
e e —a et % _.;_Z_.-_- = -.-— !'F = —-'L 5 i = C.6( u/R Projects, SKAhtmf

Detection solver noise via KLD and LRT e

Real Solutions Solution added sin(t) noise
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The LRT of the noisy antenna becomes higher
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The Normal and the SAGE algorithms with 16 number of iterations

KLD comparison LRT comparison
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Illustrative ex mple

s Real Solutions s Solution added sin(t) noise
?.5Ix 10 | ] L] L] 1 5" 10 L] T L] L] 1 L]
AT of sources A & B ~'LRTof sources A& B
ok LRT of sources A& C == LRTof sources A& C
-*:_AT of sources A & D 4+ LRT of sources A& D i
1_5|_+LHTofsourceaB&c ~LRTof sources B&C
** LRT of sources B&D b "~ LRT of sources B & D -

“+ LRT of sources C & D

*-LRT of sources C & D

8
Antenna Number

Antenna Number

The LRT of noisy antenna is highly increased
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Simulation
Direction dependent gains
Detecting solver noise via KLD and LRT
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Initial assumptions
Kullback -Leibler divergence (KLD)
Likelihood Ratio Test (LRT)
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Initial assumptions

J‘LS = [ Jl&-rﬂ" ‘I:;ﬁ :| xQIS = [ﬁe("rlqu} :fm(‘}lls’f) me(“fqu} jm(‘fmrq}]f
4 lg

* Sky noise for two different directions is uncorrelated
* Thermal noise for any number of directions from the same station is the same
* Solver noise is the same for all stations and directions

The goal is to minimize the “distance” between the real gains
and calculated solutions = Minimizing the solver noise

Kullback-Leibler Divergence (KLD)

KLD(f,9) = ¥ flogL )

The higher KLD between two different sources solutions at the same antenna, the solver noise is less

*We fit a Gaussian mixture model to the solutions by EM algorithm
*KLD is calculated via Monte-Carlo algorithm
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*Estimating unknown instrument and the sky parameters and correcting them before imaging.
*Finding the Maximum Likelihood estimate of the sky and the Instrument Unknown parameters.

Calibration challenges:

*The scientific goals of LOFAR require extreme sensitivity and dynamic range (LOFAR EOR)
*Intrinsically polarized feeds (dipoles) - polarized measurement equation

*Wide fields of view

*Pronounced direction-dependent effects

. output noise
Input noise — alibration Algorith === Noise in calibration solutions

Solver noise

“instrumental noise”
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Direction dependent gains
Detecting solver noise via KLD and LRT

Detection solver noise via KLD and LRT

Amplitude
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Solutions of antenna seven are added sin(t) noise where t is integration time:
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Calibration
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