

Extra-solar Transients

J. N. Girard*, B. Cecconi, P. Zarka, S. Corbel, J. Hessels, et al.

most slides stolen from P. Zarka, S. Corbel and J. Hessels

*AIM/IRFU/SAp/CEA-Saclay

DSL 2015 Workshop - ASTRON

a) Extrasolar systems

b) Other transients

DSL 2015 Workshop - ASTRON

Transients radio sky

- * A glimpse of **physics in extreme environments.**
- * Time domain astronomy: a huge discovery potential, recognized in all recent prospective reports. Testing relativity. Cosmic lighthouses for probing the IGM.
- * Example of unexpected transients: Discovery of pulsar by J. Bell (Nobel for Hewish), SN1a, GRB, ...
- * Even now, **new type of transients are still discovered nowadays**: TDEs and FRBs
- * A huge variety of transients on very different timescales: X-ray binaries, pulsars, black holes at cosmological distance, atmospheric γ-ray flashes,
 exoplanets, EM signature of GW, the unknown, …

DSL 2015 Workshop - ASTRON

Transients radio sky Two flavours of transients

Incoherent synchrotron emission

- Relatively slow variability
- Brightness temperature limited (10¹² K)
- Associated with all explosive events
 Strong potential for MW astronomy

Detection: images

DSL 2015 Workshop - ASTRON

Coherent emission

- Relatively fast variability
- High brightness temperature
 Often highly polarised
- Usually associated with pulsars ?

Transients radio sky

Parameter space

Parameter space largely empty and unexplored !!!

DSL 2015 Workshop - ASTRON

Dwingeloo, February 2nd-3rd 2015

Slow synchrotron transients

Primarily explosive events or outflows Known source classes:

- * Cataclysmic Variables (CVs)
- * X-ray Binaries (XRBs)
- * Magnetar outbursts
- * Supernovae (SNe)
- * Active Galactic Nuclei (AGN)
- * Tidal disruption events (TDEs)
- * Gamma-ray bursts (GRBs)
- * Some novae (usually thermal)
- * but do not forget the unknown !!

Typical evolution of a slow transient

- Important frequency evolution. Become optically thin later at lower frequencies (+lower flux also).

DSL 2015 Workshop - ASTRON

Gamma-ray bursts

- Probes of distant Universe (could be seen to $z\sim 25!$)
- Estimated rate 10⁻⁶ year⁻¹ galaxy⁻¹
- Radio emission generated by afterglows
- Prompt emission likely selfabsorbed at low frequencies

Key questions: **Physical parameters** Kinetic energy of explosion Density of circumburst medium **Outflow geometry Orphan afterglows Beaming fraction and total GRB** rate Radio loud vs radio quiet populations 70% show radio emission, 30% do not

DSL 2015 Workshop - ASTRON

Tidal disruption events

- Star passing too close to a massive black hole
- Estimated rate 10⁻⁵ year⁻¹ galaxy⁻¹
- Probe of jet physics
 - Launching mechanism
 - Super-Eddington accretion rates
 - Dense environments (cf AGN jets)

— Possibly the most frequent synchr. transients (Frail et al. 2012)

DSL 2015 Workshop - ASTRON

LOFAR: the LOw Frequency ARray

- Giant digital & multi-purpose radio telescope distributed across Europe
- Radio interferometer composed of ~48 phased arrays (stations)
- Working bands: LBA 30-80 MHz & HBA 120-240 MHz
- Improved angular (arcsec), temporal (µs), spectral (kHz) resolutions
- High sensitivity (\sim m|y) | $y = 10^{-26}$ W.m⁻².Hz⁻¹

The LOFAR Transients Pipeline

[Swinbank et al., 2011; Scheers, PhD, 2011]

First LOFAR transients detection with MSSS

First MSSS(-LBA) transient candidate (Stewart et al, in prep)

- Appears in one 11-min snapshot, using 10 σ threshold of 4 Jy

- Implied rate for $\Delta t=11$ min is 1/2537 transients day⁻¹ deg⁻² (~1 transient per square degree per 7 years!)

DSL 2015 Workshop - ASTRON

Type of fast transients ?

- * Pulsar giants pulses, RRATs and magnetar
- * SETI event
- * Electromagnetic counterpart of GW event
- * Exoplanets, flare stars, solar bursts
- * Unknown event ?
- * Fast radio bursts (FRB): aka Lorimer type burst
- FRB = Good probe of the IGM (missing baryons problem)
- FRB as a cosmic rulers (measure dark energy eq of state param. «w» at z > 2)

Study of Pulsars

* LF cutoff of temporal broadening in 1/f^{4.4} ?

Study of turbulence ? Limit of transient observations ?

* Detection of pulsars down to VLF with implication for Interstellar radio propagation

Requires coherent integration over several days

DSL 2015 Workshop - ASTRON

New FRBs

FRB 110220 DM = 944 pc cm⁻³, $z \sim 0.8$ Pulse width increases as $v^{-4.0}$, consistent with scattering in a turbulent plasma 14 such events now Rate : 10 000 / sky / day !!!

DSL 2015 Workshop - ASTRON

Exoplanetary radio emissions

DSL 2015 Workshop - ASTRON

- Jupiter LF radio emission are intense \Rightarrow discovery & measure of B field (~10G) and rotation period (~10h)
- \exists similar Terrestrial emissions, $\leq I$ MHz (B ~ 0.5G)
- Radiation belts emission = synchrotron
- Auroral emissions = Cyclotron-Maser (CMI) : $f=f_{ce}$, keV e-, high T_B, circular polar., narrow beaming, t-f variability
- Contrast Jupiter Sun ~ I \rightarrow radio search !

Planetary and exoplanetary radio emissions

RAE-2 observations (Novaco & Brown, 1978) : → no individual source identified

Galactic background flux density detected by a short dipole antenna : $S_{sky^1} (Wm^{-2}Hz^{-1}) = 2kT_{sky}/A_{eff} = 2kT_{sky}\lambda^2/\Omega$ with $\Omega = 8\pi/3$, $A_{eff} = 3\lambda^2/8\pi$

→ sensitivity with N dipoles, bandwidth b, integration time τ : $S_{min} = S_{sky}^{1}/C$ with $C = N(b\tau)^{1/2}$

DSL 2015 Workshop - ASTRON

Solar system radio emissions at Moon orbit

DSL 2015 Workshop - ASTRON

Dwingeloo, February 2nd-3rd 2015

Solar system radio emissions at Moon orbit

Dol 2010 WUIKSHUP - ADIMUN

שאווושפוטט, רפטועמרץ צווע-טוע 2015

Planetary and exoplanetary radio emissions

Radio emission	С	N (dipoles)	b (kHz)	t
Jovian radio components	10 ¹ -10 ²	1	10	1 s
			100	10 ms
SKR	10 ² –10 ³	1	100	1–10 s
UKR and NKR	10 ⁴ -10 ⁵	1	200–500	10–60 min
		10 ¹ –10 ²	100	10 s
SED	10 ⁵	10 ²	10 ⁴	300 ms
UED	10 ⁶	10 ³	10 ⁴	300 ms
Radio-exoplanet	10 ⁷	100–500	10 ³ -10 ⁴	10–60 min
		~ 10	2×10^4	1 day

Lightning from Saturn, Uranus, Mars ? Exoplanets with a large array

DSL 2015 Workshop - ASTRON

Theoretical background

- * General theoretical framework of **flow-obstacle interaction** in our SS: *magnetic reconnection, Alfvén waves, Unipolar interaction*
- * Empirical radio-magnetic scaling law with ~constant efficiency ϵ ~2-10x10⁻³

Dwingeloo, February 2nd-3rd 2015

 $\stackrel{\circ}{(R_G)}$

ς (R_G)

DSL 2015 Workshop - ASTRON

Theoretical background

Extrapolation to hot Jupiters

- Magnetospheric radio emission up to 10⁵ Jupiter
- Unipolar inductor emission up to >10⁶ Jupiter at > 30-300 MHz but requires $B^* > 10-100 B_{jup}$

DSL 2015 Workshop - ASTRON

Theoretical background

Measurement of an **interacting magnetic binary** (RS CVnV711 T) compatible with extrapolated scaling law

Incident kinetic power (W) 10¹⁴ 10¹² 10¹⁸ 10²⁰ 10¹⁶ 10¹⁸ magnetic binary 10¹⁶ [Budding et al., 1998] 10¹⁴ Radio power (W) 10¹² 10¹⁰ 10⁸ 10⁶ 10¹⁰ 10¹² 10¹⁴ 10¹⁶ 10¹⁸ Incident magnetic power (W)

[Zarka et al., 2010]

[Zarka et al., 2001, 2007]

DSL 2015 Workshop - ASTRON

Scaling laws for Jupiter-like radio emissions at Moon

DSL 2015 Workshop - ASTRON

Dwingeloo, February 2nd-3rd 2015

• Star-Exoplanet case : parameters (stellar/exoplanet B tilt/offset, orbit inclination), planetary and stellar rotation, planetary orbital period ...

DSL 2015 Workshop - ASTRON

Exoplanetary survey

- Candidates were observed with LOFAR in beamformed & interferometer mode
- No detection yet...

Moon studies

+ Automatic by-product of LF radio astronomy measurements = characterization of the (local) lunar electrostatic, electromagnetic and plasma environments, including

- fpe (LT, solar activity, traversal of Earth's magnetotail)
- e.s. discharges from regolith charging
- Properties of lunar subsurface wrt radio waves

DSL 2015 Workshop - ASTRON

Propagation effects in the IPM/ISM affecting transients

- Angular broadening (Rickett and Coles, 2000)

(limits the finest resolution of a point source due to scattering)

- Temporal Broadening

(limits the time resolution of transient signals, due to different travel time of the signal, due to scattering)

1000

Interstellar broadening ~5yr @ 1 MHz (Woan, 2000) Interplanetary broadening ~0.1s @ 1 MHz

- Depolarization (Faraday rotation $\propto \lambda^2$) (Linfield, 1996)

- Absorption effects (Dwarakanath, 2000) (Free-free absorption -> ISM = optically thick) (~2kpc @ 3 MHz in ionized medium) (Galactic disc ~1kpc thick ==> foggy in all directions)

Frequency (MHz)

- Reflection, refraction, scattering close to the Sun (Bracewell and Preston, 1956)

DSL 2015 Workshop - ASTRON

Additional slides for discussion

Exoplanetary survey

• Intense sky background (+ RFI + ionosphere) \rightarrow detection difficult

(on Earth)

• Maximum distance for N σ sky-limited detection of a source $\zeta \times Jupiter$:

 $d_{max} = (\zeta S_j A_e / 2NkT)^{1/2} (bT)^{1/4} = 5 \times 10^{-8} (A_e \zeta)^{1/2} f^{5/4} (bT)^{1/4} [pc]$ (Zarka et al., 1997)

	b τ = 10 ⁶ (1 MHz, 1 sec)		b τ = 2×10 ⁸ (3 MHz, 1 min)		b τ = 4×10 ¹⁰	
ζ = 1					(10 MHz, 1 hour)	
	f = 10	f = 100	f = 10	f = 100	f = 10	f = 100
	MHz	MHz	MHz	MHz	MHz	MHz
A _e = 10 ⁴ m ² (~NDA)	0.003	0.05	0.01	0.2	0.04	0.7
A _e = 10 ⁵ m ² (~UTR-2, LOFAR)	0.01	0.2	0.03	0.6	0.1	2.2
A _e = 10 ⁶ m ² (~SKA)	0.03	0.5	0.1	2.	0.4	7.

(distances in parsecs)

Dwingeloo, February 2nd-3rd 2015

DSL 2015 Workshop - ASTRON

Exoplanetary survey

• Maximum distance for N σ sky-limited detection of a source $\zeta \times Jupiter$:

	b τ = 10 ⁶		b τ = 2×10 ⁸		b τ = 4×10 ¹⁰	
(1 MHz, 1		z, 1 sec)	l sec) (3 MHz, 1 min)		(10 MHz, 1 hour)	
ζ = 10 ⁵	f = 10	f = 100	f = 10	f = 100	f = 10	f = 100
	MHz	MHz	MHz	MHz	MHz	MHz
$A_e = 10^4 \text{ m}^2$	1	16	3	59	13	220
(~NDA))						
$A_e = 10^5 \text{ m}^2$	3	50	11	190	40	710
(~UTR-2, LOFAR)						
$A_e = 10^6 \text{ m}^2$	9	160	33	600	130	2200
(~SKA)						

(distances in parsecs)

• turbulence \rightarrow intermittency

[Chian et al., 2010]

• scintillations \rightarrow radio flux x100 ?

DSL 2015 Workshop - ASTRON

[Farrell et al., 1999]

Some issues with space-borne interferometry

B = 50 km λ = 15 m θ_{s} = 1' = 6.64.10^-8 sr FoV= $4\pi sr$

189.10⁶ pixels if 1 pixel/beam 657.10⁶ pixels if 3 pixels/beam

13700x13700 px 24000x24000 px

Monochromatic interferometer

Finite bandwidths and averaging time

$$V = \int I_{\nu}(\hat{s}) \operatorname{sinc}(\Delta \nu \tau_{g}) \exp(-i2\pi \nu_{c}\tau_{g}) d\Omega$$
 Phase-tracking compensating for ONE direction only attenuation

For a finite bandwidth and delay, the fringe amplitude is attenuated by the factor $sinc(\Delta\nu\tau_g)$. This attenuation can be eliminated in any one direction \hat{s}_0 called the **delay center** by introducing a compensating delay $\tau_0 \approx \tau_g$ in the signal path of the "leading" antenna, as shown below. As the Earth turns, τ_0 must be continuously adjusted to track τ_g within a tolerance $|\tau_0 - \tau_g| \ll (\Delta\nu)^{-1}$. This is usually done with digital electronics.

Some issues with interferometry

Frequency smearing Time smearing limits the correlator put a upper limit to the channel width integration step time Freq $\Delta\theta\Delta\nu\ll\theta_{s}\nu$ Desired imaging channel FWHM Earth FWHM sideral $\Delta \theta \Delta t \ll \frac{\theta_s P}{2\pi}$ period region bw Desired imaging correlator region avg time ex:VLA $\Delta \nu \ll \frac{\nu \theta_{\rm s}}{\Delta \theta} = \frac{1.5 \times 10^9 \, \text{Hz} \times 4 \, \text{arcsec}}{900 \, \text{arcsec} (=15')} \approx 7 \, \text{MHz}$ $\Delta t \ll \frac{\theta_{\rm s}}{\Lambda \theta} \times 1.37 \times 10^4 \,{\rm s} = \frac{4 \,{\rm arcsec}}{900 \,{\rm arcsec}} \times 1.37 \times 10^4 \,{\rm s} \approx 60 \,{\rm s}$

DSL typical bw smearing

 $\Delta \theta = 90^{\circ}$ (angular radius to image half-space)

 $\begin{array}{lll} \Delta \theta = & 5^{\circ} & (10^{\circ} \, \mathrm{image}) \\ & \nu = & 1 \, \mathrm{MHz} \\ \lambda = & 300 \, \mathrm{m} \end{array} \\ B = & 10 \, \mathrm{km} & \theta_s = & 1.7^{\circ} \\ & & \Delta \nu \ll & \mathbf{340 \, \mathrm{kHz}} \end{array} \\ B = & 100 \, \mathrm{km} & \theta_s = & 10^{\circ} \\ & & \Delta \nu \ll & \mathbf{33 \, \mathrm{kHz}} \end{array}$

30 MHz
10 m

$$\theta_s = 3'$$

 $\Delta \nu \ll$ **10 kHz**
 $\theta_s = 21''$
 $\Delta \nu \ll$ **1.2 kHz**

DSL typical time averaging

let's assume an orbiting solid array at h=300 km G=6.67384e-11 m^3.kg^-1.s^-2 rm+h=2037.10^3 m Mm=7.3477e22 kg $\frac{P_{orb}^2}{(r_m + h)^3} = \frac{4\pi^2}{GM_m} \longrightarrow P_{orb} = 2.3h$ $\sim 8.0e-12$

 $\theta_s P_{orb}$

 $\Delta t \Delta \theta \ll$

(seleno-stationary orbit h ~ 86000 km)

$\Delta \theta = 90^{\circ}$	(angular radius to image half-space)		
B= 10 km	$ heta_s=$ 1.7°	$ heta_s=$ 3'	
	$\Delta t \ll$ 24s	$\Delta t \ll$ 0.73s	
B= 100 km	$ heta_s=$ 10'	$\theta_s=$ 21"	
	$\Delta t \ll$ 2.4s	$\Delta t \ll$ 80 ms	
$\Delta \theta = 5^{\circ}$	(10° image)		
B= 10 km	$ heta_s=$ 1.7°	$ heta_s=$ 3'	
	$\Delta t \ll $ 7min	$\Delta t \ll$ 13s	
B= 100 km	$ heta_s=$ 10'	$ heta_s=$ 21"	

Propagation effects in the IPM

- Angular broadening (Rickett and Coles, 2000)

(limits the finest resolution of a point source due to scattering)

- Temporal Broadening

(limits the time resolution of transient signals, due to different travel time of the signal, due to scattering)

Interstellar broadening ~5yr @ 1 MHz (Woan, 2000) Interplanetary broadening ~0.1s @ 1 MHz

- Depolarization (Faraday rotation $\propto \lambda^2$) (Linfield, 1996)

- Absorption effects (Dwarakanath, 2000) (Free-free absorption -> ISM = optically thick) (~2kpc @ 3 MHz in ionized medium) (Galactic disc ~1kpc thick ==> foggy in all directions)

1000 Resolution of a 50 km baseline 100 ISM perpendicular to Gal. plane 10 IPM at 30 deg Angular size (deg) 0.1 0.01 IPM at 90 deg 0.001 Resolution of a 100 km baseline 0.0001 1e-05 1 10 100 0.1 Frequency (MHz)

- Reflection, refraction, scattering close to the Sun (Bracewell and Preston, 1956)