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The Low Frequency Array - Key Facts

 The International LOFAR Telescope (ILT) is being 
built in the Netherlands, Germany, France, UK and 
Sweden (~€50M construction + running costs). 

 Operating frequency is 10 -- 250 MHz.

 1 beam with up to 96 MHz total bandwidth, split 
into 488 sub-bands with 256 Channels (8-bit 
mode).

 <488 beams on the sky with ~0.2 MHz bandwidth.

 1700--7 deg2  field-of-view.

 Low Band Antenna (LBA; Area ~ 75200 m2; 

Trec ~ 500 K; 10-90 MHz).

 High Band Antenna (HBA; Area ~ 57000 m2;

Trec ~ 160 K; 110-240 MHz).

 Correlated by an IBM BlueG/P supercomputer.
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Low Band Antenna (LBA)
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 LBA antennas: Cap containing the low noise amplifiers (LNAs), copper 
wires receive two orthogonal linear polarisations, ground plate.

 Low cost, high durability (15 year operation), whole sky coverage.

 The response curve: There is a peak close to the resonance frequency 
(52 MHz) - dipole arms are 1.38 m long.
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High Band Antenna (HBA)
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 HBA antennas: Each tile consists of 4 x 4 dual linear polarisation 
aluminium dipoles, housed in a polystyrene structure, covered by 
polypropylene sheets.

 Dipoles are combined to form a single “tile beam”.

 The response curve: There is a smoother response over the main HBA 
observing band.
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Stations
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 Three types: Core (24), Remote (14) and International (8 so far).

 Different beam shapes

 Different sensitivities
} 48/96 LBA dipoles used for Core + Remote stations.

Not to scale!

150 m - 3 km 5 km - 100 km 300 km to 1000 kmBaselines:
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Core stations (24)

8



 
John McKean - Low frequency observing and data reduction in practice 9

6 station superterp (300 m)
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International Stations (8)

EFFELSBERG

TAUTENBURG

10

CHILBOLTON



 LOFAR will have an 
unprecedented field-of-view.

 Where α depends on the 
tapering used at the station 
level.

FWHM [rad] = α
λ

D
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Field-of-View (FWHM v Freq.)
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FoV = π

�
FWHM

2

�2
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Central cabinets

 Receiver Control Units (RCU): Input antenna voltages are converted to 
base-band frequencies, amplified, filtered and digitised.

 Receive signals up to 40 dB - important for removing RFI signals.

 Sampling clocks at 200 MHz or 160 MHz (flexible selection of frequency 
bands).

 Remote Station Processing (RSP): Separate the signal into 512 sub-
bands of 156 or 195 kHz width (clock dependent).

 Carries out phase-rotation based beam-forming by multiplying with a set 
of complex weights that correspond to the geometrical delay for pointing.
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Beam-forming
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 Unlike standard telescopes, LOFAR has no moving parts.

 Pointing is achieved by combining the beams from each individual element 
(antenna or tile), at the station level, using different complex weights.

 Combine many stations to form a tied array.

 <488 beams can be formed, increasing survey speed, efficiency, calibration.
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Wide field imaging (MSSS -- MVF)
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100 square degree

~10 mJy /beam [2 
arcmin resolution]
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A Pan-European Array (ILT 46)
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http://www.astron.nl/~heald/lofarStatusMap.html
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The Dutch Array (LOFAR-NL 38)

16
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The Core Array (24)
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UV coverage and angular resolution
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 Where α depends on the data 
weighting of the visibilities (e.g., 
0.8 for uniform weighting).

FWHM [rad] = α
λ

D
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LOFAR VLBI imaging of 3C196
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Olaf Wucknitz

 LBA image of 3C196 with MERLIN 
408 MHz contours overlaid.

 1.2 arcsec beam

 HBA image of 3C196 resolves 
the double structure.

 0.35 arcsec beam



 The System Equivalent Flux Density is,

 The system temperature is,

 The sky temperature is dominated by the Galactic emission (LBA: 320000-1000 
K and HBA: 630-80 K),

 The minimum effective areas of the dipoles are defined by the observing 
wavelength and the separation between the dipoles,
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The dipole SEFD

20

Ssys =
2ηk

Aeff
Tsys

Tsys = Trec + Tsky

Tsky = TS0 λ2.55

Aeff,dipole = min
�

λ2

3
,
πd2

4

�
Aeff,dipole = min

�
λ2

3
,
25
16

�
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Array sensitivity
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Data analysis pipeline
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Data Volumes

24

 Like many new instruments, LOFAR will also investigate data handling 
management.

 Interferometric Data

Data Vol = Ba * P * T * C * S * Be * (bytes/T + overhead)

Ba = baselines = 2556 (for HBA Dual) or 1128 (for HBA Single).

P = Polarisations = 4 (XX, YY, XL, LX).

T = Time Samples = 21600 (for 6h observations and 1 s visibility averaging).

C = Channels = 256

S = Sub-bands = 244

Be = 1

bytes/Sa + overhead = 8 + 0.2

Data Vol = 113 Tb                 Need data processing cluster!
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Radio frequency interference

 Europe is a highly populated area - 
lots of radio frequency interference!

 LOFAR mitigates RFI by 

i) having a small time and frequency 
resolution (1s; 763 Hz).

ii) having 40 dB receiver units to 
stop saturation/spill over to other 
channels

iii) having digital filters to remove 
signals at < 30 MHz, 80--110 MHz.
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Radio frequency interference

AOflagger (Offringa et al.2012).

 fits a surface to the time-
frequency plane to identify 
RFI.

 Iteratively defines the 
threshold.

 Low level of false-positive 
RFI detections

 Struggles with very broad-
band RFI.
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Radio frequency interference

(Offringa et al. 2012, 2013) 

 RFI occupancy is low and day / night results are consistent.

 LBA: 1.8%

 HBA: 3.2%
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Bright confusing sources
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 The dipoles see the whole 
sky.

 Cygnus A and Cassiopeia A 
dominate the radio sky for 
LOFAR.

Galaxy

Cas A + Cyg A
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George Heald

Bright confusing sources
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George Heald

De-mixing
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Calibration

32

 RIME: The radio interferometer measurement equation, as used by CASA etc. 
for the calibration,

V obs
ij = MijBijGijDijEijPijTijV

true
ij
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Calibration

32

 RIME: The radio interferometer measurement equation, as used by CASA etc. 
for the calibration,

 Jones (2 x 2) matrices only valid for solving in one direction.

 Is that ok? LOFAR is just an interferometer.

V obs
ij = MijBijGijDijEijPijTijV

true
ij

Baseline based, 
non closing errors

Gain amplitude 
and phase

Errors due to 
elevation Opacity and path 

length variation

true visibility for 
ant. i and j

Change in 
paralactic angleInstrumental 

polarisation 

Bandpass 
response

Observed visibility 
for ant. i and j
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Direction dependent effects
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Direction dependent effects
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Ionosphere

34

 Yes, but LOFAR is a low-frequency interferometer, so the ionosphere is highly 
variable!

 The recent detection of the motion of an ionospheric wave over the LOFAR 
remote stations. 

 So what, the same is the case for other interferometers.

Mark Aartsen
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Ionosphere
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 Yes, but LOFAR is a low-frequency interferometer, the wide fields of view (many 
degrees!) mean we are observing through different parts of the ionosphere.

Different gains (amplitudes and phases over the field of view)

 Observations of 8 sources with the 
VLA at 74 MHz (10 degree FoV).

 The solutions for each antenna 
toward each source are used to 
create a phase screen.

 Direction dependent calibration 
needed.

Intema et al. (2009)
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Calibration

36

Manu Orru’
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Calibration
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Manu Orru’
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 The visibility function is not dominated by a single source (for most cases).

Your sky calibration model

 In beam calibration with the dominant sources in the field is used.

Good since it gives the amplitude and phase for the target field as a 
continuous function of time. 

EVLA Calibrator
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 Need good models of structure on the smallest-scales to calibrate the 30--100 
km Remote Stations - Your calibration is only as good as your model!

Improve the sky model with selfcal

 Selfcal call helps a lot: Nant
 unknowns Nant(Nant - 1)/2 constaints!

 A survey to establish the LOFAR initial sky model, that can be used for the first 
round of calibration will soon start (MSSS).

Initial Model Better after self calibration
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 Phases for RS503 (Green; 3 km from Superterp) and RS208 (Blue; 30 km from 
the Superterp).

Phase Solutions

Better after self calibration

 Phases change faster for longer 
baselines.

 Still trace the changes for 15s 
visibility integration time.
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The station beam

 The amplitude gain for dishes, which track a source over the sky, typically vary 
by a few percent over an observation.

 For LOFAR, the gains change 
over time because the 
projected area of the station 
changes with respect to the 
source.

 Core, Remote and 
International stations have 
different areas, so the 
amplitude gain is also 
different.

Remote

Core
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Wide field imaging

 The aim of imaging is to determine an accurate surface brightness distribution 
(positions and flux-densities) of the sky.

 We need:

i) w-projection because the 2-d 
approximation does not hold over 
wide fields of view

ii) a-projection because the LOFAR 
beam is constantly changing.

=> AW-Imager.

 Limits the dynamic range of images, 
and allows for self-calibration.

 Simulations show flux-densities 
recovered at the 1% level.

Tasse et al. (2013)



Weighting: Briggs
Robust=0
UVmax = 2
Beam size: 2.2 x 2.4 arcmin
Processing time: 8 min
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Wide field imaging



Weighting: Briggs
Robust=0
UVmax = 2
Beam size: 2.2 x 2.4 arcmin
Processing time: 8 min

Weighting: Briggs
Robust=-2
UVmax = ALL
Beam size: 29 x 17 arcsec
Processing time: 54 min
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Wide field imaging
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Dealing with large bandwidths

 LOFAR will have large fractional bandwidths ~48 to 96 MHz (between 10 -- 
250 MHz).



U.Rau and T.J.Cornwell: Multi-Scale Multi-Frequency Synthesis Imaging in Radio Interferometry

be modeled and removed before or during multi-frequency
synthesis imaging.

To summarize, just as standard interferometric image re-
construction uses a priori information about the spatial struc-
ture of the sky to estimate the visibility function in unmeasured
regions of the uv-plane, multi-frequency image reconstruction
algorithms need to use a priori information about the spectral
structure of the sky brightness. By combining a suitable model
with the known frequency-dependence of the spatial-frequency
coverage and element response function, it is possible to recon-
struct the broad-band sky brightness distribution from incom-
plete spectral and spatial-frequency sampling.

2. Multi-scale Multi-frequency deconvolution
The MS-MFS algorithm described here is based on the iter-
ative image-reconstruction framework described in Rau et al.
(2009) and summarized in Appendix A. Sections 2.1 to 2.7 for-
mulate the algorithm and summarize its implementation in the
CASA package. Differences between the multi-scale and multi-
frequency parts of MS-MFS with the original MF-CLEAN and
MS-CLEAN approaches are highlighted in sections 3.1 and 3.2.

2.1. Parameterization of spatial structure

An image with multi-scale structure is written as a linear combi-
nation of images at different spatial scales (Cornwell, 2008).

Im =
Ns−1
∑

s=0
Ishps ! I

sky,δ
s (1)

where Im is a multi-scale model image3, and Isky,δs is a collection
of δ-functions that describe the locations and integrated ampli-
tudes of flux components of scale s in the image. Ns is the num-
ber of discrete spatial scales used to represent the image and Ishps
is a tapered truncated parabola of width proportional to s. The
symbol ! denotes convolution.

2.2. Parameterization of spectral structure

The spectrum of each flux component is modeled by a polyno-
mial in frequency ( a Taylor series expansion about ν0 ).

Imν =
Nt−1
∑

t=0
wtνI

sky
t where wtν =

(

ν − ν0
ν0

)t

(2)

where Iskyt represents a multi-scale Taylor coefficient image, and
Nt is the order of the Taylor series expansion.

These Taylor coefficients are interpreted by choosing an
astrophysically appropriate spectral model and performing a
Taylor expansion to derive an expression that each coeffi-
cient maps to. One practical choice is a power law with a
varying index, represented by a second-order polynomial in
log(I) vs log

(

ν
ν0

)

space.

Iskyν = I
sky
ν0

(

ν

ν0

)Iskyα +I
sky
β
log
(

ν
ν0

)

(3)

3 In this paper, superscripts for vectors and matrices indicate type
(model, sky, observed, dirty, residual, etc), and subscripts in italics in-
dicate enumeration indices (t, q for Taylor-term, s, p for spatial scale,
ν for frequency channel.). Non-italic subscripts indicate specific values
of the enumerated indices (for example, Iν0 , I0 or Iα).

Here, Iskyα represents an average spectral-index, and Isky
β
repre-

sents spectral-curvature. The motivation behind this choice of
interpretation is the fact that continuum synchrotron emission is
usually modeled (and observed) as a power law distribution with
frequency. Across the wide frequency ranges that new receivers
are now sensitive to, spectral breaks, steepening and turnovers
need to be factored into models, and the simplest way to include
them and ensure smoothness, is spectral curvature4.

A Taylor expansion of Eqn.3 yields the following expres-
sions for the first three coefficients fromwhich the spectral index
Iskyα and curvature Isky

β
images can be computed algebraically.

Im0 = I
sky
ν0 ; Im1 = I

sky
α I

sky
ν0 ; Im2 =













Iskyα (I
sky
α − 1)
2

+ Isky
β













Iskyν0 (4)

Note that with this choice of parameterization, we are using a
polynomial to model a power-law, and Nt rapidly increases with
bandwidth. A power-series expansion about Iskyα and Isky

β
will

yield a logarithmic expansion (i.e. I vs log ν) which requires
fewer coefficients to represent the same spectrum5.

2.3. Multi-scale multi-frequency model

A wideband model of the sky brightness distribution is con-
structed from Eqns 1 and 2. A wideband flux component is a
spatial basis function (Ishps , Gaussian or parabola) whose inte-
grated amplitude follows a Taylor polynomial in frequency. A
region of emission in which the spectrum varies with position
will be modeled as a sum of these wide-band flux components.
The image-reconstructionprocess simultaneously solves for spa-
tial and spectral coefficients of these flux components.

The image at each frequency can be modeled as a linear com-
bination of Taylor-coefficient images at different spatial scales.
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Here, Ns is the number of discrete spatial scales used to represent
the image and Nt is the order of the series expansion of the spec-
trum. Iskys

t
represents a collection of δ-functions that describe the

locations and integrated amplitudes of flux components of scale
s in the image of the tth series coefficient.

2.4. Measurement equations

The measurement equations6 for a sky brightness distribution
parameterized by Eqn.5 are

4 Wideband imaging algorithms described in Conway et al. (1990)
and Sault & Wieringa (1994) use a fixed spectral index across the band,
and handle slight curvature by performing multiple rounds of imaging
after removing the dominant or average α at each stage. They also sug-
gest using higher order polynomials to handle spectral curvature.
5 Conway et al. (1990) state that the logarithmic expansion has better

convergence properties than the linear expansion when α << 1. An even
more compact representation is a polynomial in log I vs log ν, but it be-
comes numerically unstable to operate on logarithms and exponentials
of pixel amplitudes, especially in the presence of noise.
6 Appendix A contains an explanation of the matrix notation

used here, and briefly describes standard radio-interferometric image-
reconstruction within a least-squares model-fitting framework (mea-
surement equations, normal equations, and iterative χ2 minimization).
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 MFS represents the sky emission in terms of a Taylor series about a reference 
frequency.
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be modeled and removed before or during multi-frequency
synthesis imaging.

To summarize, just as standard interferometric image re-
construction uses a priori information about the spatial struc-
ture of the sky to estimate the visibility function in unmeasured
regions of the uv-plane, multi-frequency image reconstruction
algorithms need to use a priori information about the spectral
structure of the sky brightness. By combining a suitable model
with the known frequency-dependence of the spatial-frequency
coverage and element response function, it is possible to recon-
struct the broad-band sky brightness distribution from incom-
plete spectral and spatial-frequency sampling.

2. Multi-scale Multi-frequency deconvolution
The MS-MFS algorithm described here is based on the iter-
ative image-reconstruction framework described in Rau et al.
(2009) and summarized in Appendix A. Sections 2.1 to 2.7 for-
mulate the algorithm and summarize its implementation in the
CASA package. Differences between the multi-scale and multi-
frequency parts of MS-MFS with the original MF-CLEAN and
MS-CLEAN approaches are highlighted in sections 3.1 and 3.2.

2.1. Parameterization of spatial structure

An image with multi-scale structure is written as a linear combi-
nation of images at different spatial scales (Cornwell, 2008).

Im =
Ns−1
∑

s=0
Ishps ! I

sky,δ
s (1)

where Im is a multi-scale model image3, and Isky,δs is a collection
of δ-functions that describe the locations and integrated ampli-
tudes of flux components of scale s in the image. Ns is the num-
ber of discrete spatial scales used to represent the image and Ishps
is a tapered truncated parabola of width proportional to s. The
symbol ! denotes convolution.

2.2. Parameterization of spectral structure

The spectrum of each flux component is modeled by a polyno-
mial in frequency ( a Taylor series expansion about ν0 ).
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∑
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where Iskyt represents a multi-scale Taylor coefficient image, and
Nt is the order of the Taylor series expansion.

These Taylor coefficients are interpreted by choosing an
astrophysically appropriate spectral model and performing a
Taylor expansion to derive an expression that each coeffi-
cient maps to. One practical choice is a power law with a
varying index, represented by a second-order polynomial in
log(I) vs log
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space.
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(
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3 In this paper, superscripts for vectors and matrices indicate type
(model, sky, observed, dirty, residual, etc), and subscripts in italics in-
dicate enumeration indices (t, q for Taylor-term, s, p for spatial scale,
ν for frequency channel.). Non-italic subscripts indicate specific values
of the enumerated indices (for example, Iν0 , I0 or Iα).

Here, Iskyα represents an average spectral-index, and Isky
β
repre-

sents spectral-curvature. The motivation behind this choice of
interpretation is the fact that continuum synchrotron emission is
usually modeled (and observed) as a power law distribution with
frequency. Across the wide frequency ranges that new receivers
are now sensitive to, spectral breaks, steepening and turnovers
need to be factored into models, and the simplest way to include
them and ensure smoothness, is spectral curvature4.

A Taylor expansion of Eqn.3 yields the following expres-
sions for the first three coefficients fromwhich the spectral index
Iskyα and curvature Isky

β
images can be computed algebraically.
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Note that with this choice of parameterization, we are using a
polynomial to model a power-law, and Nt rapidly increases with
bandwidth. A power-series expansion about Iskyα and Isky

β
will

yield a logarithmic expansion (i.e. I vs log ν) which requires
fewer coefficients to represent the same spectrum5.

2.3. Multi-scale multi-frequency model

A wideband model of the sky brightness distribution is con-
structed from Eqns 1 and 2. A wideband flux component is a
spatial basis function (Ishps , Gaussian or parabola) whose inte-
grated amplitude follows a Taylor polynomial in frequency. A
region of emission in which the spectrum varies with position
will be modeled as a sum of these wide-band flux components.
The image-reconstructionprocess simultaneously solves for spa-
tial and spectral coefficients of these flux components.

The image at each frequency can be modeled as a linear com-
bination of Taylor-coefficient images at different spatial scales.
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Here, Ns is the number of discrete spatial scales used to represent
the image and Nt is the order of the series expansion of the spec-
trum. Iskys

t
represents a collection of δ-functions that describe the

locations and integrated amplitudes of flux components of scale
s in the image of the tth series coefficient.

2.4. Measurement equations

The measurement equations6 for a sky brightness distribution
parameterized by Eqn.5 are

4 Wideband imaging algorithms described in Conway et al. (1990)
and Sault & Wieringa (1994) use a fixed spectral index across the band,
and handle slight curvature by performing multiple rounds of imaging
after removing the dominant or average α at each stage. They also sug-
gest using higher order polynomials to handle spectral curvature.
5 Conway et al. (1990) state that the logarithmic expansion has better

convergence properties than the linear expansion when α << 1. An even
more compact representation is a polynomial in log I vs log ν, but it be-
comes numerically unstable to operate on logarithms and exponentials
of pixel amplitudes, especially in the presence of noise.
6 Appendix A contains an explanation of the matrix notation

used here, and briefly describes standard radio-interferometric image-
reconstruction within a least-squares model-fitting framework (mea-
surement equations, normal equations, and iterative χ2 minimization).
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 A power model is used to describe the spectral dependence of the sky 
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be modeled and removed before or during multi-frequency
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ture of the sky to estimate the visibility function in unmeasured
regions of the uv-plane, multi-frequency image reconstruction
algorithms need to use a priori information about the spectral
structure of the sky brightness. By combining a suitable model
with the known frequency-dependence of the spatial-frequency
coverage and element response function, it is possible to recon-
struct the broad-band sky brightness distribution from incom-
plete spectral and spatial-frequency sampling.

2. Multi-scale Multi-frequency deconvolution
The MS-MFS algorithm described here is based on the iter-
ative image-reconstruction framework described in Rau et al.
(2009) and summarized in Appendix A. Sections 2.1 to 2.7 for-
mulate the algorithm and summarize its implementation in the
CASA package. Differences between the multi-scale and multi-
frequency parts of MS-MFS with the original MF-CLEAN and
MS-CLEAN approaches are highlighted in sections 3.1 and 3.2.

2.1. Parameterization of spatial structure

An image with multi-scale structure is written as a linear combi-
nation of images at different spatial scales (Cornwell, 2008).
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where Im is a multi-scale model image3, and Isky,δs is a collection
of δ-functions that describe the locations and integrated ampli-
tudes of flux components of scale s in the image. Ns is the num-
ber of discrete spatial scales used to represent the image and Ishps
is a tapered truncated parabola of width proportional to s. The
symbol ! denotes convolution.
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The spectrum of each flux component is modeled by a polyno-
mial in frequency ( a Taylor series expansion about ν0 ).
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where Iskyt represents a multi-scale Taylor coefficient image, and
Nt is the order of the Taylor series expansion.

These Taylor coefficients are interpreted by choosing an
astrophysically appropriate spectral model and performing a
Taylor expansion to derive an expression that each coeffi-
cient maps to. One practical choice is a power law with a
varying index, represented by a second-order polynomial in
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dicate enumeration indices (t, q for Taylor-term, s, p for spatial scale,
ν for frequency channel.). Non-italic subscripts indicate specific values
of the enumerated indices (for example, Iν0 , I0 or Iα).

Here, Iskyα represents an average spectral-index, and Isky
β
repre-

sents spectral-curvature. The motivation behind this choice of
interpretation is the fact that continuum synchrotron emission is
usually modeled (and observed) as a power law distribution with
frequency. Across the wide frequency ranges that new receivers
are now sensitive to, spectral breaks, steepening and turnovers
need to be factored into models, and the simplest way to include
them and ensure smoothness, is spectral curvature4.

A Taylor expansion of Eqn.3 yields the following expres-
sions for the first three coefficients fromwhich the spectral index
Iskyα and curvature Isky
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Note that with this choice of parameterization, we are using a
polynomial to model a power-law, and Nt rapidly increases with
bandwidth. A power-series expansion about Iskyα and Isky

β
will

yield a logarithmic expansion (i.e. I vs log ν) which requires
fewer coefficients to represent the same spectrum5.

2.3. Multi-scale multi-frequency model

A wideband model of the sky brightness distribution is con-
structed from Eqns 1 and 2. A wideband flux component is a
spatial basis function (Ishps , Gaussian or parabola) whose inte-
grated amplitude follows a Taylor polynomial in frequency. A
region of emission in which the spectrum varies with position
will be modeled as a sum of these wide-band flux components.
The image-reconstructionprocess simultaneously solves for spa-
tial and spectral coefficients of these flux components.

The image at each frequency can be modeled as a linear com-
bination of Taylor-coefficient images at different spatial scales.
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Here, Ns is the number of discrete spatial scales used to represent
the image and Nt is the order of the series expansion of the spec-
trum. Iskys

t
represents a collection of δ-functions that describe the

locations and integrated amplitudes of flux components of scale
s in the image of the tth series coefficient.

2.4. Measurement equations

The measurement equations6 for a sky brightness distribution
parameterized by Eqn.5 are

4 Wideband imaging algorithms described in Conway et al. (1990)
and Sault & Wieringa (1994) use a fixed spectral index across the band,
and handle slight curvature by performing multiple rounds of imaging
after removing the dominant or average α at each stage. They also sug-
gest using higher order polynomials to handle spectral curvature.
5 Conway et al. (1990) state that the logarithmic expansion has better

convergence properties than the linear expansion when α << 1. An even
more compact representation is a polynomial in log I vs log ν, but it be-
comes numerically unstable to operate on logarithms and exponentials
of pixel amplitudes, especially in the presence of noise.
6 Appendix A contains an explanation of the matrix notation

used here, and briefly describes standard radio-interferometric image-
reconstruction within a least-squares model-fitting framework (mea-
surement equations, normal equations, and iterative χ2 minimization).
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Imaging results

 MS-MFS Imaging of Cygnus 
A (109 and 183 MHz), total 
bandwidth 27.5 MHz
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 LOFAR is almost fully constructed.

 Imaging data over the 10-250 MHz frequency range, data with the long 
baselines and wide-field data has been taken to test the system during 
commissioning - looking good so far!

 Special care needs to be taken in the analysis of LOFAR data due to

 Data size, RFI.

 Direction dependent effects.

 Need for wide-field imaging (aw-projection).

 Enjoy getting your hands on LOFAR data after coffee!


