The University of Manchester Jodrell Bank Observatory

ANNA SCAIFE JODRELL BANK CENTRE FOR ASTROPHYSICS @RADASTRAT

(GENTLE) INTRODUCTION TO INTERFEROMETRY

The University of Manchester Jodrell Bank Observatory

ANNA SCAIFE JODRELL BANK CENTRE FOR ASTROPHYSICS @RADASTRAT

(GENTLE) INTRODUCTION TO INTERFEROMETRY

ERIS 2017

WHAT IS A TELESCOPE?

Optical: $\lambda = 350-750$ nm

Optical: $\lambda = 350-750$ nm

Optical: $\lambda = 350-750$ nm

High Frequency Radio: $\lambda = 1 - 21$ cm

High Frequency Radio: $\lambda = 1 - 21$ cm

High Frequency Radio: $\lambda = 1 - 21$ cm

Lower Radio Frequency...

LOFAR-UK @ Chilbolton Observatory

Low Radio Frequency! $\lambda = 1-30m$

Low Radio Frequency! $\lambda = 1-30m$

RESOLUTION:

Green Bank Telescope, West Virgina, USA Very Large Array (VLA), New Mexico, USA

Single Dish

Array

ERIS 2017

FILLED APERTURES

ERIS 2017

ADDING INTERFEROMETER

 $R \propto \langle [V_{\rm A} \cos \omega (t - \tau_{\rm g}) + V_{\rm B} \cos (\omega t) + V_{\rm rec,A} + V_{\rm rec,B}]^2 \rangle$

ADDING INTERFEROMETER

ADDING INTERFEROMETER

Envelope due to primary beam

Fringes due to interference pattern

 $\frac{\lambda}{D}$ $\frac{\lambda}{b}$

Combination

MULTIPYING INTERFEROMETER

IN PHASE

OUT OF PHASE

MULTIPLYING INTERFEROMETER

$R \propto \langle V_{\rm A} \cos \omega (t - \tau_{\rm g}) \cdot V_{\rm B} \cos \omega t \rangle = \frac{1}{2} V_{\rm A} V_{\rm B} \cos \tau_{\rm g}$

primary beam envelope:

ERIS 2017

BASELINE LENGTH

Missing short baselines results in poor sensitivity to low brightness extended structure. Notice the negative "holes" (darker blue) underlying the bright structure.

number of wavelengths in baseline

COMPLEX VISIBILITIES

In reality the response will be 2D, but in 1D for simplicity:

power out as a function of baseline
$$R_{\sin}(u) = \int_{\text{src}} B(\theta) \cos(2\pi \, u \, \theta) d\theta$$
$$R_{\sin}(u) = \int_{\text{src}} B(\theta) \sin(2\pi \, u \, \theta) d\theta$$

The sky brightness distribution is **not an even function**. If we want to reconstruct it from its Fourier components then we need **both the cos and sin terms**.

VAN CITTERT ZERNIKE FUNCTION

The (2-*D*) *lateral coherence function of the radiation field in space is the Fourier Transform of the (2-D) brightness (or intensity) distribution of the source.*

$$\langle V(x_1, t) V(x_2, t) \rangle = \int \int B(\theta, \phi) e^{-2\pi i (u\theta + v\phi)} d\theta d\phi$$
$$u = \frac{(x_1 - x_2)}{\lambda} \quad v = \frac{(y_1 - y_2)}{\lambda}$$

The Visibility Function is therefore another name for the spatial correlation function.

VISIBILITY

From these components we define the **complex fringe visibility** for a particular baseline:

VISIBILITIES & IMAGES

$$I_{meas}(l,m) = \frac{1}{M} \sum_{i=1}^{M} V(u_i, v_i) e^{2\pi i (u_i l + v_i m)}$$
$$= \frac{1}{M} \sum_{i=1}^{M} V(u_i, v_i) \left[\cos[2\pi (u_i l + v_i m)] + i \sin[2\pi (u_i l + v_i m)] \right]$$

This is a **complex** quantity, but the sky intensity is **real**.

$$V(-u,-v) = V^*(u,v)$$

If we change our notation slightly, so that $V=Ae^{i\phi}$, we can write:

$$I_{meas}(l,m) = \frac{1}{M} \sum_{i=1}^{M} A(u_i, v_i) \cos[2\pi(u_i l + v_i m) + \phi_i]$$

FOURIER COMPONENTS

Writing the equation in this way allows us to visualise how our image is composed.

$$I_{meas}(l,m) = \frac{1}{M} \sum_{i=1}^{M} A(u_i, v_i) \cos[2\pi(u_i l + v_i m) + \phi_i]$$

MANCHESTER 1824

CONCLUSIONS

- The key to interferometry is the geometric delay;
- A 2-element adding interferometer is a direct analogue of Young's slits;
- The sky is not symmetric we need both cosine & sine waves to make a picture of it;
- Interferometers measure complex visibilities, which are the Fourier components of the sky brightness.

RadioNet has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562

MANCHESTER 1824

CONCLUSIONS

- The key to interferometry is the geometric delay;
- A 2-element adding interferometer is a direct analogue of Young's slits;
- The sky is not symmetric we need both cosine & sine waves to make a picture of it;
- Interferometers measure complex visibilities, which are the Fourier components of the sky brightness.

RadioNet has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562