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Preamble

§ AIM: This lecture aims to give a general introduction to advanced 
calibration techniques, focusing on conceptual knowledge. 

§ OUTLINE: 

1. Revision of an ideal interferometer and calibration philosophy. 

2. Self-calibration (self-cal). 

3. Direction dependent effects.  

1. The beam 

2. The atmosphere 

4. Spectral dependence of calibration 
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1. Revision of an ideal 
interferometer and 
calibration philosophy
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Revision of an ideal interferometer
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phase error (δωt) 
delay error (δτg) 
amplitude errors (δV)

Ionosphere+Troposphere 
(low freq  ——  high freq)

Bad positions & 
wide 
bandwidths

Non-identical 
electronics / gains

Solve for these issues using calibration
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Revision of the RIME
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The radio interferometry measurement equation (RIME) relates the observed 
(perturbed) visibility to the ideal (unperturbed) visibility.

~Vij = Jij ~V
IDEAL
ij Jij = Ji ⇥ J⇤

jwhere

observed visibility

Combined Jones matrix

ideal visibility

Jones matrix for antenna i

A Jones matrix is a 2 x 2 matrix that describes the antenna based calibrations, for 
each correlation, for a given correction (gain, bandpass, delay, etc.), for example,
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Revision of the RIME
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Within, for example CASA, the full radio interferometry measurement equation can 
be written as,

V obs

ij = MijBijGijDijEijPijTijV
true

ij

Baseline based, 
non closing errors

Gain amplitude 
and phase

Errors due to 
elevation Opacity and path 

length variation

true visibility for 
ant. i and j

Change in 
paralactic angleInstrumental 

polarisation 

Bandpass 
response

Observed visibility 
for ant. i and j

Calibration solves for each Jones matrix (when required) given a model for the sky.
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Calibration strategy

Target
Gain Calibrator 
(Phase, Amplitude)

Gain Calibrator 
(Phase, Amplitude)

Flux Calibrator 
(Flux, Bandpass, Delay)

1. Observe source 
2. Observe calibrator to measure  

gains (amplitude and phase) as 
a function of time. 

3. Observe bright calibrator of 
known flux-density and 
spectrum to measure absolute 
flux calibration, band-pass and 
residual delays
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Example of delay calibration

Here is an observed visibility function (delay), the ideal visibility function and the 
calibrated data (after solving the Kij in the the measurement equation).

Main source of delay error: Large fractional bandwidths. 

More complex delay corrections require ‘fringe fitting’ : see VLBI lecture.

RAW MODEL CORRECTED
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Example of phase calibration

Here is an observed visibility function (phase), the ideal visibility function and the 
calibrated data (after solving the Gij in the the measurement equation).

Main source of phase error: Variable ionosphere or troposphere + electronics. 

More complex delay corrections require ‘fringe fitting’ : see VLBI lecture.

RAW MODEL CORRECTED
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Here is an observed visibility function (amplitude), the ideal visibility function and 
the calibrated data (after solving the Gij in the the measurement equation).

Each colour represents visibilities with a common antenna. 

Main source of amplitude error: Variable gain in the amplifiers of the system.

RAW MODEL CORRECTED

Example of amplitude calibration
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Looking for closure

Calibration works due to closure (the expectation that the phase, φij, and 
amplitude, Vij,  of groups of baselines have certain properties given the source 
structure). 

Phase:                                                          

Amplitude: 

e.g. for a point source the closure phase is 0. 

Aren’t we just forcing the data to fit the model? No as long as, 
i) You have a good model for the sky (point-source) 
ii) You have sufficient signal-to-noise ratio on each baseline (> 3σ) 

There are N free-parameters for each (close to) N*(N-1) / 2 constraints from the 
total number of baselines.

~Vij = Jij ~V
IDEAL
ij

An error in your model  
can be absorbed in the 
calibration

Cijt(t) = �ij(t) + �jk(t) + �ki(t)

�ijkl(t) =
|Vij(t)||Vkl(t)|
|Vik(t)||Vjl(t)|
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By comparing with an object with a known flux-density (compare the amplitude 
gains), it is possible to move from relative amplitudes to absolute amplitudes (~5 % 
repeatability).

Absolute flux-density calibration
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Always inspect your solutions to see if the variations as a function of time and 
frequency are as expected.

Inspect your solutions

~Vij = Jij ~V
IDEAL
ij

An error in your model  
can be absorbed in the 
calibration

(left) A point-source model use to calibration antennas 
where the baselines see a point (green) and resolved 
(blue) source. (right) A proper model is used for all 
baselines.
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2. Self-calibration (self-
cal)

14
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Self-calibration philosophy

After transferring the solutions from a calibrator we may find that there are 
residual errors in our data. 

Why? 
Our calibrators are observed at a different time (except for simultaneous 
observations; in beam-calibration) and position on the sky than our target. 

Use the process of self-calibration: 
1) Make an image of your target (after applying calibrator solutions). 
2) Use this model to calibrate the data over some solution interval. 
3) Make an image of your target (after applying self-calibration solutions). 
4) Use this model to calibrate the data over some solution interval. 
5) Iterate this process until no major improvement on image quality. 

Advantages: 
1) Can correct for residual amplitude and phase errors. 
2) Can correct for direction dependent effects (see later). 

Disadvantages: 
1) Errors in the model or low SNR can propagate into your self-calibration 
solutions, and you can diverge from the correct model. 
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Phase errors

Our calibration of the instrumentation + propagation phase shifts relies on our 
calibrator giving a good estimate of these corrections. 

Assume: They do not change as a function of (short) time and (small) position 
on the sky (otherwise we loose coherence).

55 µJy / beam 43 µJy / beam 43 µJy / beam

Example of ALMA (1 min solution interval) self-calibration of a gravitational lens.
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When self-calibration goes bad (phase)

46 µJy / beam

1.5 min solution 
interval

6 second solution interval

If the solution interval is too low, 
solutions become noisy (start fitting the 
noise).

Source flux goes up. 
image rms goes up.
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Amplitude errors

2 antennas

3 antennas

4 antennas

Ideal situation with no errors. 

Our point spread function comes 
from the response our 
interferometer.

By adding just one more antenna 
we suppress the side-lobes.

But, what happens if one antenna 
has an amplitude error? 

By adding another antenna we 
suppress the side-lobes further.

position (θ)
P

ow
er

 (W
)
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CAUTION: Amplitude self-calibration should be handled with care.

6 seconds amplitude self-calibration 
changes the relative gains by 40 to 60%.

Strategy: Start long (hours) and work 
down until the solutions get noisy.

58 µJy / beam

When self-calibration goes bad (amp)
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What is an appropriate solution time?

3 mins
1 min
3 sec

Want to have, 
Shortest possible time-scale to track the gain variations, whist being long 
enough to have a sufficient signal-to-noise ratio.
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Student exercise

Q. What is the minimum solution interval to achieve a 3σ baseline-sensitivity for a 
100 mJy point-source that is detected at the 100 sigma level in 10 minutes for an 
array with 10 identical antennas?

A. For a 100 sigma detection the image sensitivity is 1 mJy / beam. 

The number of baselines is 10 * 9 / 2 = 45 baselines. 

Therefore the baseline sensitivity in 10 minutes is 1 * sqrt(45) = 6.7 mJy / beam or 
15 sigma (= 100 / 6.7 sigma). 

For a 3 sigma detection, the baseline sensitivity can go up by factor of 5, so the time 
must go down by factor 52 = 25 (recall that σ ~ 1 / √Δν * t). 

So the solution interval we need is 10 * 60 / 25 ~ 25 seconds. 

We will be able to track the phase variations over ~ 20 time intervals that are 25 
seconds each.
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3. Direction dependent 
effects.

22
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Phased arrays
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Phased arrays

How do you point with a phased array?
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delay

Parabolic reflector 
(mechanical)

Aperture array 
(electronic)

Reflector + receiver array 
(mechanical + electronic)

25

Pointing a phased array

The delay that we add will coherently add the different elements of an aperture 
array in one direction, and suppress the emission from other directions.
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Wide field imaging is fun!

100 square degree 

~10 mJy /beam [2 
arcmin resolution]

Imaging wide-fields is useful for, 
1) Efficient all-sky survey  
2) Looking for rare objects

Wide-fields introduce many issues  for 
a good calibration, 

1) Variable beam power as a 
function of position results in 
a more complicated 
amplitude calibration. 

2)  The phase solutions in one 
direction cannot be applied 
to another. 

3) Sky model is more 
complicated (many sources).

LOFAR MSSS SVF; George Heald

~Vij = Jij ~V
IDEAL
ij

An error in your model  
can be absorbed in the 
calibration
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3. Direction dependent 
effects. I - The beam

27
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Beam-forming



John McKean - Calibration 29

What happens with a large beam?

A large beam means that you can survey much larger areas of the sky 
Great for surveys, transients 
Bad if you are not interested in the sky that is off-axis

Galaxy

Cas A + 
Cyg A

Single LBA station image WSRT (25-m dish array) at 150 MHz

Ger de Bruyn
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The beam is not constant with time
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Correcting for the beam

Variable beams as a function of time mean that the contribution from each source 
will vary over time to the visibilities (must convolve sky model with beam model). 

V⌫(u, v) =

Z Z
A⌫(l,m)I⌫(l,m)e�2⇡i(ul+lm)dldm

Issues: 
1) How well do we know the beam? Recall, the beam is the FT of the 

aperture. What happens if a dipole stops working? 

2) The beam changes as a function of frequency (FWHM ~ λ / D). 
 

~Vij = Jij ~V
IDEAL
ij

An error in your model  
can be absorbed in the 
calibration

More sophisticated calibration that includes the beam (a-projection is being 
implemented in CASA for the JVLA). 
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3. Direction dependent 
effects. II - The 
atmosphere

32
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The ionosphere

The ionosphere is a reflecting (to long wavelengths) 
layer of the atmosphere at ~ 125 km. 

Structure and electron density changes with altitude. 

Effects radio waves through: 
1) Reflection (transparency) 
2) Scintillation (continuum imaging) 
3) Faraday rotation (polarisation)
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Direction dependent calibration

The solution to these issues is to calibrate of gains, not in a single position, but 
over several positions (10s to 100s) across the sky.

~Vij =
X

s

Jij,s~V
IDEAL
ij

Computationally expensive and the robustness is a matter of (current) debate.

Sarod Yattawatta
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Full-field self-calibration Subtract central sources only, 
leave off-axis source.

Tom Oosterloo
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Self-Calibrate using model of off-
axis source, apply calibrations 
and image

Apply-corrections to whole dataset 
and remove off-axis source. 
Remove any corrections.

Tom Oosterloo
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Make new image of the sky 
(without off-axis source).

Use self-calibration, apply 
calibration and make new 
image.

Tom Oosterloo
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Direction dependent calibration

Alternatively, calibrate in one direction at a time and remove the troublesome 
sources (called peeling)

Before. After peeling.

Tom Oosterloo
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4. Spectral dependence 
of calibration

39
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Dealing with large bandwidths

New interferometers have (fractional) large bandwidths. 
Good for sensitivity: σT ~ (Δν)-0.5 
Better for image fidelity: good uv-coverage.

Must know the surface brightness distribution as a function of frequency.
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Multi-Frequency Synthesis (MFS)

U.Rau and T.J.Cornwell: Multi-Scale Multi-Frequency Synthesis Imaging in Radio Interferometry

be modeled and removed before or during multi-frequency
synthesis imaging.

To summarize, just as standard interferometric image re-
construction uses a priori information about the spatial struc-
ture of the sky to estimate the visibility function in unmeasured
regions of the uv-plane, multi-frequency image reconstruction
algorithms need to use a priori information about the spectral
structure of the sky brightness. By combining a suitable model
with the known frequency-dependence of the spatial-frequency
coverage and element response function, it is possible to recon-
struct the broad-band sky brightness distribution from incom-
plete spectral and spatial-frequency sampling.

2. Multi-scale Multi-frequency deconvolution
The MS-MFS algorithm described here is based on the iter-
ative image-reconstruction framework described in Rau et al.
(2009) and summarized in Appendix A. Sections 2.1 to 2.7 for-
mulate the algorithm and summarize its implementation in the
CASA package. Differences between the multi-scale and multi-
frequency parts of MS-MFS with the original MF-CLEAN and
MS-CLEAN approaches are highlighted in sections 3.1 and 3.2.

2.1. Parameterization of spatial structure

An image with multi-scale structure is written as a linear combi-
nation of images at different spatial scales (Cornwell, 2008).

Im =
Ns−1
∑

s=0
Ishps ⋆ I

sky,δ
s (1)

where Im is a multi-scale model image3, and Isky,δs is a collection
of δ-functions that describe the locations and integrated ampli-
tudes of flux components of scale s in the image. Ns is the num-
ber of discrete spatial scales used to represent the image and Ishps
is a tapered truncated parabola of width proportional to s. The
symbol ⋆ denotes convolution.

2.2. Parameterization of spectral structure

The spectrum of each flux component is modeled by a polyno-
mial in frequency ( a Taylor series expansion about ν0 ).

Imν =
Nt−1
∑

t=0
wtνI

sky
t where wtν =

(

ν − ν0
ν0

)t

(2)

where Iskyt represents a multi-scale Taylor coefficient image, and
Nt is the order of the Taylor series expansion.

These Taylor coefficients are interpreted by choosing an
astrophysically appropriate spectral model and performing a
Taylor expansion to derive an expression that each coeffi-
cient maps to. One practical choice is a power law with a
varying index, represented by a second-order polynomial in
log(I) vs log

(

ν
ν0

)

space.

Iskyν = I
sky
ν0

(

ν

ν0

)Iskyα +I
sky
β
log
(

ν
ν0

)

(3)

3 In this paper, superscripts for vectors and matrices indicate type
(model, sky, observed, dirty, residual, etc), and subscripts in italics in-
dicate enumeration indices (t, q for Taylor-term, s, p for spatial scale,
ν for frequency channel.). Non-italic subscripts indicate specific values
of the enumerated indices (for example, Iν0 , I0 or Iα).

Here, Iskyα represents an average spectral-index, and Isky
β
repre-

sents spectral-curvature. The motivation behind this choice of
interpretation is the fact that continuum synchrotron emission is
usually modeled (and observed) as a power law distribution with
frequency. Across the wide frequency ranges that new receivers
are now sensitive to, spectral breaks, steepening and turnovers
need to be factored into models, and the simplest way to include
them and ensure smoothness, is spectral curvature4.

A Taylor expansion of Eqn.3 yields the following expres-
sions for the first three coefficients fromwhich the spectral index
Iskyα and curvature Isky

β
images can be computed algebraically.

Im0 = I
sky
ν0 ; Im1 = I

sky
α I

sky
ν0 ; Im2 =

⎛

⎜

⎜

⎜

⎜

⎝

Iskyα (I
sky
α − 1)
2

+ Isky
β

⎞

⎟

⎟

⎟

⎟

⎠

Iskyν0 (4)

Note that with this choice of parameterization, we are using a
polynomial to model a power-law, and Nt rapidly increases with
bandwidth. A power-series expansion about Iskyα and Isky

β
will

yield a logarithmic expansion (i.e. I vs log ν) which requires
fewer coefficients to represent the same spectrum5.

2.3. Multi-scale multi-frequency model

A wideband model of the sky brightness distribution is con-
structed from Eqns 1 and 2. A wideband flux component is a
spatial basis function (Ishps , Gaussian or parabola) whose inte-
grated amplitude follows a Taylor polynomial in frequency. A
region of emission in which the spectrum varies with position
will be modeled as a sum of these wide-band flux components.
The image-reconstructionprocess simultaneously solves for spa-
tial and spectral coefficients of these flux components.

The image at each frequency can be modeled as a linear com-
bination of Taylor-coefficient images at different spatial scales.

Imν =
Nt
∑

t=0

Ns
∑

s=0
wtν
[

Ishps ⋆ I
sky
s
t

]

where wtν =
(

ν − ν0
ν0

)t

(5)

Here, Ns is the number of discrete spatial scales used to represent
the image and Nt is the order of the series expansion of the spec-
trum. Iskys

t
represents a collection of δ-functions that describe the

locations and integrated amplitudes of flux components of scale
s in the image of the tth series coefficient.

2.4. Measurement equations

The measurement equations6 for a sky brightness distribution
parameterized by Eqn.5 are

4 Wideband imaging algorithms described in Conway et al. (1990)
and Sault & Wieringa (1994) use a fixed spectral index across the band,
and handle slight curvature by performing multiple rounds of imaging
after removing the dominant or average α at each stage. They also sug-
gest using higher order polynomials to handle spectral curvature.
5 Conway et al. (1990) state that the logarithmic expansion has better

convergence properties than the linear expansion when α << 1. An even
more compact representation is a polynomial in log I vs log ν, but it be-
comes numerically unstable to operate on logarithms and exponentials
of pixel amplitudes, especially in the presence of noise.
6 Appendix A contains an explanation of the matrix notation

used here, and briefly describes standard radio-interferometric image-
reconstruction within a least-squares model-fitting framework (mea-
surement equations, normal equations, and iterative χ2 minimization).
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MS model image
Taylor co-efficient images
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be modeled and removed before or during multi-frequency
synthesis imaging.

To summarize, just as standard interferometric image re-
construction uses a priori information about the spatial struc-
ture of the sky to estimate the visibility function in unmeasured
regions of the uv-plane, multi-frequency image reconstruction
algorithms need to use a priori information about the spectral
structure of the sky brightness. By combining a suitable model
with the known frequency-dependence of the spatial-frequency
coverage and element response function, it is possible to recon-
struct the broad-band sky brightness distribution from incom-
plete spectral and spatial-frequency sampling.

2. Multi-scale Multi-frequency deconvolution
The MS-MFS algorithm described here is based on the iter-
ative image-reconstruction framework described in Rau et al.
(2009) and summarized in Appendix A. Sections 2.1 to 2.7 for-
mulate the algorithm and summarize its implementation in the
CASA package. Differences between the multi-scale and multi-
frequency parts of MS-MFS with the original MF-CLEAN and
MS-CLEAN approaches are highlighted in sections 3.1 and 3.2.

2.1. Parameterization of spatial structure

An image with multi-scale structure is written as a linear combi-
nation of images at different spatial scales (Cornwell, 2008).

Im =
Ns−1
∑

s=0
Ishps ⋆ I

sky,δ
s (1)

where Im is a multi-scale model image3, and Isky,δs is a collection
of δ-functions that describe the locations and integrated ampli-
tudes of flux components of scale s in the image. Ns is the num-
ber of discrete spatial scales used to represent the image and Ishps
is a tapered truncated parabola of width proportional to s. The
symbol ⋆ denotes convolution.

2.2. Parameterization of spectral structure

The spectrum of each flux component is modeled by a polyno-
mial in frequency ( a Taylor series expansion about ν0 ).

Imν =
Nt−1
∑

t=0
wtνI

sky
t where wtν =

(

ν − ν0
ν0

)t

(2)

where Iskyt represents a multi-scale Taylor coefficient image, and
Nt is the order of the Taylor series expansion.

These Taylor coefficients are interpreted by choosing an
astrophysically appropriate spectral model and performing a
Taylor expansion to derive an expression that each coeffi-
cient maps to. One practical choice is a power law with a
varying index, represented by a second-order polynomial in
log(I) vs log
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space.

Iskyν = I
sky
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(

ν
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)Iskyα +I
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(

ν
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(3)
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(model, sky, observed, dirty, residual, etc), and subscripts in italics in-
dicate enumeration indices (t, q for Taylor-term, s, p for spatial scale,
ν for frequency channel.). Non-italic subscripts indicate specific values
of the enumerated indices (for example, Iν0 , I0 or Iα).

Here, Iskyα represents an average spectral-index, and Isky
β
repre-

sents spectral-curvature. The motivation behind this choice of
interpretation is the fact that continuum synchrotron emission is
usually modeled (and observed) as a power law distribution with
frequency. Across the wide frequency ranges that new receivers
are now sensitive to, spectral breaks, steepening and turnovers
need to be factored into models, and the simplest way to include
them and ensure smoothness, is spectral curvature4.

A Taylor expansion of Eqn.3 yields the following expres-
sions for the first three coefficients fromwhich the spectral index
Iskyα and curvature Isky
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images can be computed algebraically.
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sky
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Note that with this choice of parameterization, we are using a
polynomial to model a power-law, and Nt rapidly increases with
bandwidth. A power-series expansion about Iskyα and Isky

β
will

yield a logarithmic expansion (i.e. I vs log ν) which requires
fewer coefficients to represent the same spectrum5.

2.3. Multi-scale multi-frequency model

A wideband model of the sky brightness distribution is con-
structed from Eqns 1 and 2. A wideband flux component is a
spatial basis function (Ishps , Gaussian or parabola) whose inte-
grated amplitude follows a Taylor polynomial in frequency. A
region of emission in which the spectrum varies with position
will be modeled as a sum of these wide-band flux components.
The image-reconstructionprocess simultaneously solves for spa-
tial and spectral coefficients of these flux components.

The image at each frequency can be modeled as a linear com-
bination of Taylor-coefficient images at different spatial scales.

Imν =
Nt
∑
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Ns
∑

s=0
wtν
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Ishps ⋆ I
sky
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t
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where wtν =
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Here, Ns is the number of discrete spatial scales used to represent
the image and Nt is the order of the series expansion of the spec-
trum. Iskys

t
represents a collection of δ-functions that describe the

locations and integrated amplitudes of flux components of scale
s in the image of the tth series coefficient.

2.4. Measurement equations

The measurement equations6 for a sky brightness distribution
parameterized by Eqn.5 are

4 Wideband imaging algorithms described in Conway et al. (1990)
and Sault & Wieringa (1994) use a fixed spectral index across the band,
and handle slight curvature by performing multiple rounds of imaging
after removing the dominant or average α at each stage. They also sug-
gest using higher order polynomials to handle spectral curvature.
5 Conway et al. (1990) state that the logarithmic expansion has better

convergence properties than the linear expansion when α << 1. An even
more compact representation is a polynomial in log I vs log ν, but it be-
comes numerically unstable to operate on logarithms and exponentials
of pixel amplitudes, especially in the presence of noise.
6 Appendix A contains an explanation of the matrix notation

used here, and briefly describes standard radio-interferometric image-
reconstruction within a least-squares model-fitting framework (mea-
surement equations, normal equations, and iterative χ2 minimization).

3

U.Rau and T.J.Cornwell: Multi-Scale Multi-Frequency Synthesis Imaging in Radio Interferometry

be modeled and removed before or during multi-frequency
synthesis imaging.

To summarize, just as standard interferometric image re-
construction uses a priori information about the spatial struc-
ture of the sky to estimate the visibility function in unmeasured
regions of the uv-plane, multi-frequency image reconstruction
algorithms need to use a priori information about the spectral
structure of the sky brightness. By combining a suitable model
with the known frequency-dependence of the spatial-frequency
coverage and element response function, it is possible to recon-
struct the broad-band sky brightness distribution from incom-
plete spectral and spatial-frequency sampling.

2. Multi-scale Multi-frequency deconvolution
The MS-MFS algorithm described here is based on the iter-
ative image-reconstruction framework described in Rau et al.
(2009) and summarized in Appendix A. Sections 2.1 to 2.7 for-
mulate the algorithm and summarize its implementation in the
CASA package. Differences between the multi-scale and multi-
frequency parts of MS-MFS with the original MF-CLEAN and
MS-CLEAN approaches are highlighted in sections 3.1 and 3.2.

2.1. Parameterization of spatial structure

An image with multi-scale structure is written as a linear combi-
nation of images at different spatial scales (Cornwell, 2008).

Im =
Ns−1
∑

s=0
Ishps ⋆ I

sky,δ
s (1)

where Im is a multi-scale model image3, and Isky,δs is a collection
of δ-functions that describe the locations and integrated ampli-
tudes of flux components of scale s in the image. Ns is the num-
ber of discrete spatial scales used to represent the image and Ishps
is a tapered truncated parabola of width proportional to s. The
symbol ⋆ denotes convolution.

2.2. Parameterization of spectral structure

The spectrum of each flux component is modeled by a polyno-
mial in frequency ( a Taylor series expansion about ν0 ).

Imν =
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t=0
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t where wtν =
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ν − ν0
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)t
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where Iskyt represents a multi-scale Taylor coefficient image, and
Nt is the order of the Taylor series expansion.

These Taylor coefficients are interpreted by choosing an
astrophysically appropriate spectral model and performing a
Taylor expansion to derive an expression that each coeffi-
cient maps to. One practical choice is a power law with a
varying index, represented by a second-order polynomial in
log(I) vs log

(

ν
ν0

)

space.

Iskyν = I
sky
ν0

(

ν

ν0

)Iskyα +I
sky
β
log
(

ν
ν0

)

(3)

3 In this paper, superscripts for vectors and matrices indicate type
(model, sky, observed, dirty, residual, etc), and subscripts in italics in-
dicate enumeration indices (t, q for Taylor-term, s, p for spatial scale,
ν for frequency channel.). Non-italic subscripts indicate specific values
of the enumerated indices (for example, Iν0 , I0 or Iα).

Here, Iskyα represents an average spectral-index, and Isky
β
repre-

sents spectral-curvature. The motivation behind this choice of
interpretation is the fact that continuum synchrotron emission is
usually modeled (and observed) as a power law distribution with
frequency. Across the wide frequency ranges that new receivers
are now sensitive to, spectral breaks, steepening and turnovers
need to be factored into models, and the simplest way to include
them and ensure smoothness, is spectral curvature4.

A Taylor expansion of Eqn.3 yields the following expres-
sions for the first three coefficients fromwhich the spectral index
Iskyα and curvature Isky

β
images can be computed algebraically.

Im0 = I
sky
ν0 ; Im1 = I

sky
α I

sky
ν0 ; Im2 =

⎛

⎜

⎜

⎜

⎜

⎝

Iskyα (I
sky
α − 1)
2

+ Isky
β

⎞

⎟

⎟

⎟

⎟

⎠

Iskyν0 (4)

Note that with this choice of parameterization, we are using a
polynomial to model a power-law, and Nt rapidly increases with
bandwidth. A power-series expansion about Iskyα and Isky

β
will

yield a logarithmic expansion (i.e. I vs log ν) which requires
fewer coefficients to represent the same spectrum5.

2.3. Multi-scale multi-frequency model

A wideband model of the sky brightness distribution is con-
structed from Eqns 1 and 2. A wideband flux component is a
spatial basis function (Ishps , Gaussian or parabola) whose inte-
grated amplitude follows a Taylor polynomial in frequency. A
region of emission in which the spectrum varies with position
will be modeled as a sum of these wide-band flux components.
The image-reconstructionprocess simultaneously solves for spa-
tial and spectral coefficients of these flux components.

The image at each frequency can be modeled as a linear com-
bination of Taylor-coefficient images at different spatial scales.

Imν =
Nt
∑

t=0

Ns
∑

s=0
wtν
[

Ishps ⋆ I
sky
s
t

]

where wtν =
(

ν − ν0
ν0

)t

(5)

Here, Ns is the number of discrete spatial scales used to represent
the image and Nt is the order of the series expansion of the spec-
trum. Iskys

t
represents a collection of δ-functions that describe the

locations and integrated amplitudes of flux components of scale
s in the image of the tth series coefficient.

2.4. Measurement equations

The measurement equations6 for a sky brightness distribution
parameterized by Eqn.5 are

4 Wideband imaging algorithms described in Conway et al. (1990)
and Sault & Wieringa (1994) use a fixed spectral index across the band,
and handle slight curvature by performing multiple rounds of imaging
after removing the dominant or average α at each stage. They also sug-
gest using higher order polynomials to handle spectral curvature.
5 Conway et al. (1990) state that the logarithmic expansion has better

convergence properties than the linear expansion when α << 1. An even
more compact representation is a polynomial in log I vs log ν, but it be-
comes numerically unstable to operate on logarithms and exponentials
of pixel amplitudes, especially in the presence of noise.
6 Appendix A contains an explanation of the matrix notation

used here, and briefly describes standard radio-interferometric image-
reconstruction within a least-squares model-fitting framework (mea-
surement equations, normal equations, and iterative χ2 minimization).

3

Parameterise:

Build Ι(ν) model:

Sky images:

We can represent the sky in emission interms of a Taylor expansion about some 
reference frequency (see Rau & Cornwell 2011).

A power-law model is used to describe the spectral dependence of the sky 
emission.
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Imaging example: Cygnus A

LOFAR imaging at 109 to 183 MHz for 8 h on source.
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Summary
1. The atmosphere, delay errors and electronics of the receiver systems will 

corrupt the signal from your target of interest. 
2. Standard calibration transfer techniques, using bright and simple sources 

can eliminate most of these effects. 
3. Residual errors can be removed using self-calibration providing you have 

sufficient signal-to-noise ratio, enough baselines, and an accurate model for 
your source. 

Your calibration is only as good as your model since model errors 
will be absorbed into your calibration solutions.

4. Direction dependent effects will limit the quality of wide-field imaging due to 
time variable beam patterns, time variable ionosphere and our limited 
knowledge of the sky model. 

5. New advanced calibration techniques are being tested and already show 
promise in reaching the thermal noise in the images, but careful study of the 
effects of direction dependent calibration need to be better understood. 

6. Spectral variation in the sky model must also be taken into account due to 
the large bandwidths of the new telescope systems.
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