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Fourier Transforms
®00000

Fourier Space

Fourier Transforms
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Fourier Transforms
O@0000
Fourier Space

Cat Picture

Disclaimer: This is not my cat.
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Filtered Fourier Cat HPF Cat
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Fourier Transforms

Filtered Fourier Cat LPF Cat

Anna Scaife University of Manchester Introduction to Radio Imaging October 16, 2017 10/50



Fourier Transforms
ooe
Filtering

Fourier Space

Small Fourier Frequencies = Large Scale Image Structure
Large Fourier Frequencies = Small Scale Image Structure

Big is Small & Small is Big
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Fourier Transforms
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Convolution Theorem

Fourier Space

Filtered Fourier Cat Fourier Cat Filter

LPF Cat
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Fourier Transforms
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Convolution Theorem

Fourier Space
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Fourier Transforms
ooe
Convolution Theorem

Convolution Theorem

F(x,y) x G(x,y) < F(u,v)* G(u, v)
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Fourier Transforms

Conjugate Symmetry

Fourier Space

Filtered Fourier Cat Fourier Cat Filter
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Fourier Transforms
oe
Conjugate Symmetry

Conjugate Symmetry

F*(u,v) = F(-u,-v)
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Astronomy
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Astronomy

I(l,m)

Fourier

V(u,v)
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HPF Iag
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LPF Image
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Shorter baseline
= smaller Fourier frequency
= larger image scale

AT A <l

Longer baseline
larger Fourier frequency
= smaller image scale
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Interferometers

Projected
baseline

Shorter baseline

Longer baseline
= larger Fourier frequency
= smaller image scale
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Interferometers

(I,m)= f f S(u,v)V (1, )™ dy dy

Imea A

This sampling function identifies the values of (u,v) that we
sample according to our baseline distribution.

S(u,v) = Eé(u—ui,v—v,.)

i=1

Where M is the number of different visibilities that we have:

M=N_(N, -1)/2xN,xN,

ant
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Interferometers

S(u,v)=26(u—u,-,v—v,-)

s

6 -fU nction Imeas (l’ m) = ff S(u9 V)V(M, v)eZJti(qum) dl/l dV

reminder

We can use the properties of the & -
fé(x—xo)f(x)dx function to rewrite this integral as a sum:

= f(xo)

! S 271 (uyl+v;m)
Imeux(la m) = MEV(M"’ 12 )e T (uil+vim

i=1
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Interferometers

1 X .
Im(,m. (l,m) - _E V(ui, vi)EZm(ull-H,m)
M i=1

=ﬁEvm,.,v,-)[cos[zn(u,-Hv.—m>l+isi“[2”<“f’”f’”)]]

i=1

This is a complex quantity, but the sky intensity is real.

V(-u,—v)=V"(u,v)

If we change our notation slightly, so that ¥'=A4¢*, we can write:

1M
1o (lm)=— % A(u;,v,)cos[2m(ul +v.m)+ ¢,
s (s1) = 3 Al cos[ 271 )+¢,]

i=1
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Interferometers

Visibility Components

1 M
L. (,m)=—"% A(u,,v,)cos[2x(ul +v;m)+ ¢,]
> ¢
Writing the equation in this way allows us to visualise how our
image is composed.
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Interferometers

Synthesized Beam
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Interferometers

Synthesized Beam

* Achange in frequency
produces a radial change in

(uwv).

* A change in time produces a
~azimuthal change in (u,v).

v]

frequency

* The response from
multi-frequency

u data is a little more
complicated (later).

time
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Interferometers

Synthesized Beam

S(u,v)  FT[S@w)]

The baseline (uv) sampling
defines the measured
angular scales and sets the
resolution.

Disambiguation:
Synthesized beam
= point spread function
= dirty beam
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Interferometers
®000000

Gridding

Gridding

FFTs are faster but they also introduce complications.

FFTs require regularly spaced (u,v)
data.

Interferometer data can be regularly
spaced in time and frequency, but
are not regularly spaced inuand v.

In order to use an FFT we need to
GRID our data. This causes its own
issues...
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Interferometers
O®00000

Gridding

Gridding
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Interferometers
00@0000

Gridding

Gridding

na Scaife University of M. r ion to Radio Imagin, October 16, 2017 32



Interferometers
[e]e]e] le]ele)

Gridding

Aliasing

Aliasing can be prevented by using a suitable
convolution function when we do the gridding.

The most commonly used “anti-aliasing” kernel
is the Prolate Spheroidal Wave Function (PSWF).

Casapy (toolkit):
im.setoptions(gridfunction=‘sf"’)
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Source moving further to the left...

Edge of image
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Interferometers
[e]e]e]e] lele)
Gridding

Anti-Aliasing

Convolution kernels cause each visibility to contribute to multiple
pixels in our uv-grid.

g(x)x f(x) < g(k)* f(k)

When we do the FFT our image
will be multiplied by the FT of our
convolution kernel.

F_I [Vgrid (uk ’ Vk )]
F_l [Caa grid (uk > vk )]

Imeas (l’ m) =
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Interferometers
[e]e]e]e]e] o)
Gridding

Anti-Aliasing

Veria Wy, v ) = [[V(”»V) “S(u,v)]*C,, (u, V)] I (u,,v,)

I 4
The
The gridded convolution/
visibility data The input gridding
on a grid with visibility data, kernel
Jk x Jk pixels sampledata  function.
number of
times and Sample onto
frequencies. regularly
spaced grid
using the
Shah
function.
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Interferometers
[e]e]e]e]e]e] )

Gridding

Anti-Aliasing

Veria Wy, v ) = [[V(”»V) “S(u,v)]*C,, (u, V)] I (u,,v,)

I

| have only considered the anti-aliasing kernel here; however, there
are extra kernels that one can use to correct different effects.

Most imaging now uses w-projection ( for correcting direction dependent
effects ); for w-projection we combine the w-kernel and the aa-
kernel:

Cu,v)=C,, (u,v)*C,(u,v)
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Interferometers

©0000
Weighting

Visibility Weighting

We can change the angular response of our measurements by
changing the sampling in time and frequency, but this requires
additional observational data.

Another way of changing this response is to include an additional
weighting function in the UV gridding.

We can adapt this function to bring out features on different scales
in the same data set.
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Weighting

Visibility Weighting

Interferometers
O@000

Vgrid(uk, V)= [[V(u, v)-S(u,v) Wu,v)]=C,,(u, v)] I (u,,v,)

Fourier
transform of
sky intensity
Sampling
function from

baseline
distribution

I

Visibility
weighting
function
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Interferometers

00®00
Weighting

Visibility Weighting

Natural Robust Uniform
1 1
‘ C s pGu.v)+oi]
S PUy, V) + 0y ou,,v,)
Lower angular Higher angular
resolution J resolution
Better signal to Poorer signal to
noise noise
Poorer sidelobe Better sidelobe
structure structure
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Interferometers
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Weighting

Visibility Weighting

Natural Robust = 0.7 Uniform
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Interferometers
[e]e]e]e] ]
Weighting

Visibility Weighting

All of the examples so far show only point sources. To enhance the
signal-to-noise of emission that is extended relative to the size of the
PSF a weighting known as “uv-tapering” can be applied to the data.

{ Contribution from
i extended emission

Contribution
from point
sources
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Deconvolution

Imaging

Interferometers

000000000

Veria (U5 V;) = [[V(u, v)-S(u,v)-W(u,v)]=C,(u, v)] 1 (u,,v,)

To make an image we can now simply FFT our UV grid, but we must
also correct for the gridding function that we have introduced and
normalise the weights:

FT'[ [Viria ()]

l
(I,m)= (2 gnd(u’v))FT [C o gria ()]

meas dirty

The image that we have made is known as the DIRTY IMAGE,
because we have not made any correction for the weighted

sampling S(u,v) W(u,v).
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Interferometers
0®0000000
Deconvolution

Because we are multiplying our continuous visibilities by

S(u,v)W(u,v) the DIRTY IMAGE shows us the convolution of their
Fourier transforms.

V(u,v) [Su,v)- W(u,v)]| < I(1,m) % byg.(1,m)

Where the point spread function, or synthesized beam, or dirty
beam, is defined as

b (I,m) = FT™'[S(u,v)- W (u,v) ]

It would be nice if we could just divide out this multiplication directly
in Fourier space, but we can't because it has zero-valued
components.
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Interferometers
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Deconvolution

Deconvolution

We can correct (partially) for the effect of the synthesized beam by
deconvolving it using an iterative algorithm.

The most widely used deconvolution method in radio interferometry
is the CLEAN algorithm.

There are multiple variants of CLEAN: Hogbom, Clark, Cotton-
Schwab, Multi-scale, ASP...

The simplest variant of CLEAN is called Hogbom CLEAN.
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Interferometers
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Deconvolution

Deconvolution

This algorithm works entirely on the dirty image. It iteratively
subtracts the PSF from the image until a stopping criterion is met.

Assumptions:

* The sky intensity can be well represented
by a sum of delta functions.
N

I..= Eajé(l—lj,m—mj)

j=l
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Interferometers
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Deconvolution

Deconvolution

This algorithm works entirely on the dirty image. It iteratively
subtracts the PSF from the image until a stopping criterion is met.

Assumptions:

* The sky intensity can be well represented
by a sum of delta functions.

Preparation:

* Make your dirty image.

* Make your dirty beam.
Note: Your dirty beam image must
be twice as large as your image.

Anna Scaife University of Manchester Introduction to Radio Imaging October 16, 2017



Interferometers
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Deconvolution

Deconvolution

Method:

Minor Cycle

1. Find the peak in the dirty image.
2. Subtractfx PSF at that location.
f is called the “loop gain”.
3. Store the position and peak value at that
point.
4. Repeat 1-3 until the stopping criterion is
met.
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Interferometers
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Deconvolution

Deconvolution

This algorithm works entirely on the dirty image. It iteratively
subtracts the PSF from the image until a stopping criterion is met.

Stopping Criteria:

* Number of iterations (repeats).
* Negative peak identified.
* Smallest peak that can be identified is
below some threshold.
* Hard threshold.
* Noise based threshold.
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Interferometers
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Deconvolution

Deconvolution

This algorithm works entirely on the dirty image. It iteratively
subtracts the PSF from the image until a stopping criterion is met.

Outputs:

* When you stop iterating (for whatever
reason) you call the final subtracted image
your RESIDUAL IMAGE.

* Add a Gaussian with the width of the main
peak of the dirty beam (“CLEAN BEAM")
to the residual image for each position
and peak value in your list of subtracted
components (known as “clean
components”) to make the CLEAN or
RESTORED IMAGE.
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Interferometers
00000000
Deconvolution

Lecture Materials

https://github.com/as595/A110fYourBases/tree/master/TIARA

FourierCats.ipynb

Blog: allofyourbases.com
https://allofyourbases.com/2017/09/11/furrier-cats/
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