Tutorial T2: Data Inspection and Flagging

Andy Biggs ALMA Regional Centre, European Southern Observatory

Preliminaries

- Move to a directory where you intend to work
 - Should have plenty of space
 - Dataset we'll be working on is 1.6 GB in size
- Download data, script and final list of flags
 You've already done this, right...?
- Tutorial script contains skeletal CASA commands
 - Tips and hints as well
 - Goal is to complete script

Start CASA

- Current data-reduction package for radio astronomy
 - Common Astronomy Software Applications
- On the command line type:
 - casa (previously was casapy)
- After a short while, this brings up:
 - An iPython prompt
 - All Python functionality is available in CASA
 - e.g. **range** command, numpy, loops, etc.
 - A logger window
 - Useful information is reported here by each task

Locate the data

- List directory from within CASA
 - Can use usual unix commands i.e. 'Is'
 - Often requires a '!' e.g. '!echo \$HOME'
- The dataset we will use is **all_avg.ms/**
 - This is a directory!
 - .ms = Measurement Set (MS)
 - Contains tables and visibility data
 - Rarely have to worry about contents of MS
- CASA works directly on this MS
 - One doesn't load the data into CASA

Running CASA tasks (1)

- Set inputs individually
 - inp taskname
 - parameter1=x
 - parameter2=y
 - inp (to review)
 - go
- Parameter names can be tab-completed
 - Avoids typos and creation of useless variables

• tget taskname

Returns previous inputs (stored in .last file)

Running CASA tasks (2)

- Use a "one-liner"
 - taskname(parameter1=x,parameter2=y) or...
 - taskname(x,y) (if x and y are the first two inputs)
- Assemble one-liners in a python script
 - execfile('t2_flagging.py')
 - It is generally a good idea to do this
 - Allows all processing steps to be easily repeated
 - Reminder of what you did

Time to start looking at the data!

ERIS 2017

View summary of the data

- Relevant task is **listobs**
- Summary information includes:
 - Which sources are included in the file
 - Spectral window (spw) properties
 - Bandwidth, central frequency, number of channels, correlations
 - Which antennas were in the array
 - Observation sequence
 - Which source with which spectral windows when?
- Spectral windows
 - Spectral windows are selected via a (0-based) index
 - Non-science spws often included e.g. ALMA

listobs output

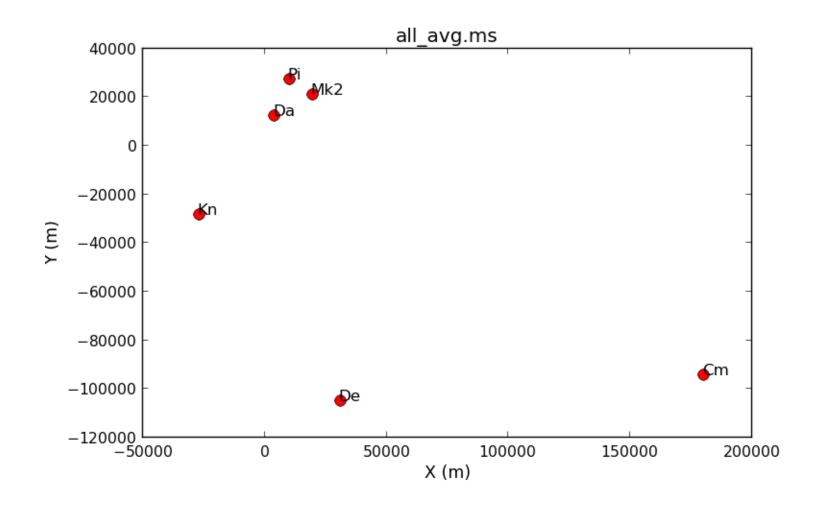
Fields: 5

ID	Code	Name			RA	Decl	Epo	ch nRov	٨S			
Θ	1302+5748				13:02:52.4	65277 +57.48.37	7.60932 J200	0 20490	90			
1	1252+5634				12:52:26.2	85900 +56.34.19	9.48800 J200	0 40920	90 3	3C27	7.1	
2	ACAL	1331+	305		13:31:08.2	87300 +30.30.32	2.95900 J200	0 4050	90			
3		1407+	284		14:07:00.3	94410 +28.27.14	4.68990 J200	00 3870	90			
4		0319+	415		03:19:48.1	.60110 +41.30.42	2.10330 J200	00 5400	90			
Spectr	al Wir	ndows:	(4 u	nique spe	ectral wind	lows and 1 uniqu	ue polarizat	tion setups)				
SpwI	D Nar	ne #	Chans	Frame	Ch0(MHz)	ChanWid(kHz)	TotBW(kHz)	CtrFreq(MHz)	Co	rrs		
Θ	nor	ne	64	T0P0	4817.000	2000.000	128000.0	4880.0000	RR	RL	LR	LL
1	nor	ne	64	T0P0	4945.000	2000.000	128000.0	5008.0000	RR	RL	LR	LL
2	nor	ne	64	T0P0	5073.000	2000.000	128000.0	5136.0000	RR	RL	LR	LL
3	nor	ne	64	T0P0	5201.000	2000.000	128000.0	5264.0000	RR	RL	LR	LL

listobs output

Fields:	5			-							
	Code Nam	,e		RA	Decl	Epoc	ch nRov	WS			
Θ	130	2+5748		13:02:52.4	465277 +57.48.37	/.60932 J200	00 20490	00			
1	1252+5634			12:52:26.2	285900 +56.34.19).48800 J200	00 40920	00			l
2 A	ACAL 1331+305			13:31:08.2	287300 +30.30.32	2.95900 J200	00 4050	00			l
3	1407+284			14:07:00.3	394410 +28.27.14	4.68990 J200	00 3870	00			l
4	031	9+415		03:19:48.1	160110 +41.30.42	2.10330 J200	00 5400	00			
Spectra	Spectral Windows: (4 unique spectral windows and 1 unique polarization setups)										l
SpwID	Name	#Chans	Frame	Ch0(MHz)	ChanWid(kHz)	TotBW(kHz)	CtrFreq(MHz)	Cor	rrs		
Θ	none	64	T0P0	4817.000	2000.000	128000.0	4880.0000	RR	RL	LR	LL
1	none	64	T0P0	4945.000	2000.000	128000.0	5008.0000	RR	RL	LR	LL
2	none	64	T0P0	5073.000	2000.000	128000.0	5136.0000	RR	RL	LR	LL
3	none	64	TOPO	5201.000	2000.000	128000.0	5264.0000	RR	RL	LR	LL

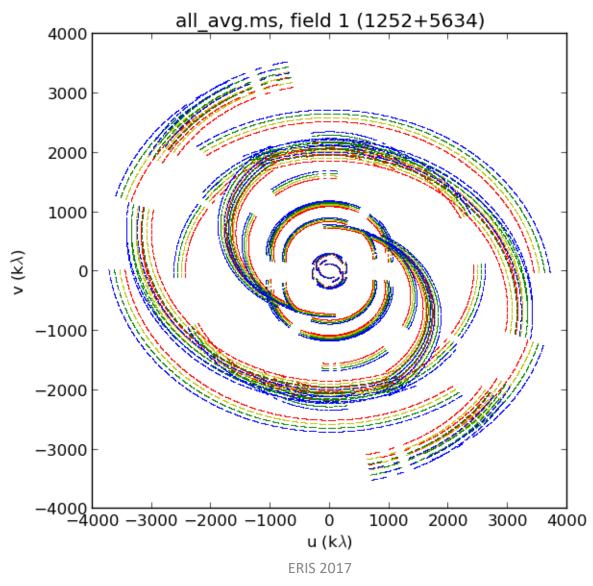
listobs output


Fields:	5			-								
	Code Nar	me		RA	Decl	Epoc	ch nRov	ws				
Θ	13/	02+5748		13:02:52.4	65277 +57.48.37	.60932 J200	0 20490	90				
1	12	52+5634		12:52:26.2	85900 +56.34.19	.48800 J200	00 40920	90				
2	ACAL 13	31+305		13:31:08.2	87300 +30.30.32	2.95900 J200	0 4050	90				
3	1407+284			14:07:00.394410 +28.27.14.68990 J2000			0 3870	38700				
4	03	19+415		03:19:48.1	.60110 +41.30.42	2.10330 J200	0 5400	9 54000				
Spectra	al Windo	ws: (4 เ	unique sp	ectral wind	lows and 1 uniqu	ue polarizat	ion setups)					
SpwID) Name	#Chans	Frame	Ch0(MHz)	ChanWid(kHz)	TotBW(kHz)	CtrFreq(MHz)	Со	rrs			
Θ	none	64	TOPO	4817.000	2000.000	128000.0	4880.0000	RR	RL	LR	LL	
1	none	64	TOPO	4945.000	2000.000	128000.0	5008.0000	RR	RL	LR	LL	
2	none	64	TOPO	5073.000	2000.000	128000.0	5136.0000	RR	RL	LR	LL	
3	none	64	TOPO	5201.000	2000.000	128000.0	5264.0000	RR	RL	LR	LL	

View antenna locations

- Relevant task is **plotants**
- Shows 2-D map of antenna positions
- Interesting information includes:
 - Size of the array
 - Antenna distribution
- Often used to select reference antenna
 - Choose one with a large range of baseline lengths
 - For e-MERLIN, 'Mk2' is usually used

plotants output

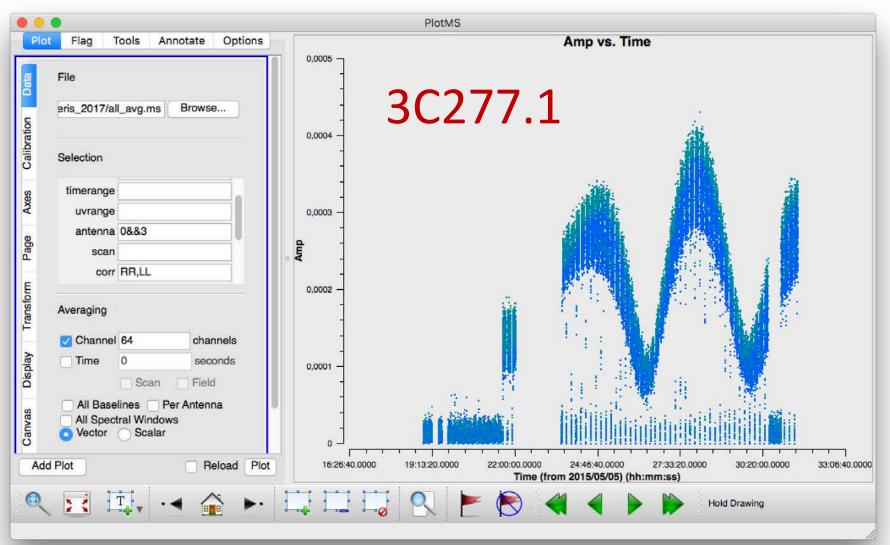


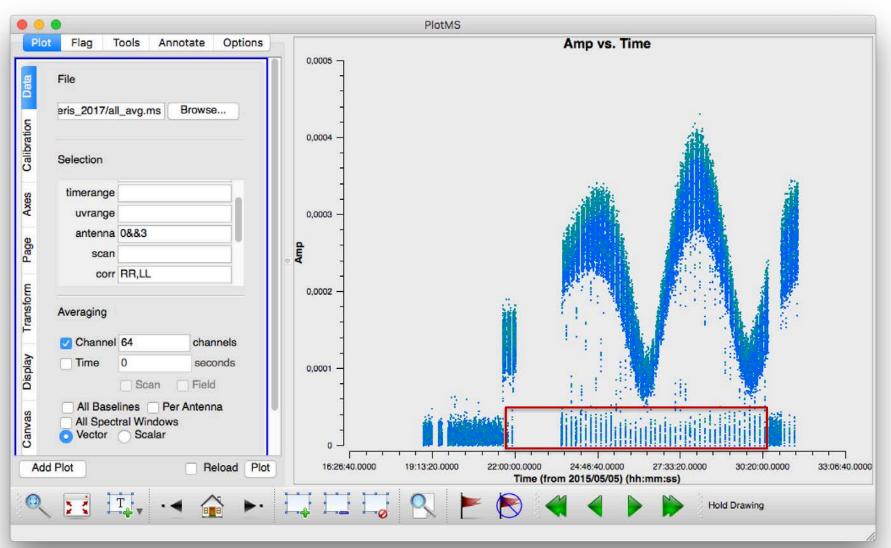
View (*u*,*v*) coverage

- Relevant task is **plotuv**
- Shows projected baseline for each visibility
 - w coordinate is not shown (obviously)
- Complete coverage (no gaps) would be nice...
 - Incomplete coverage produces image sidelobes
 - The bigger the gaps, the bigger the sidelobes
- Wide-bandwidths help a lot
 - Separate track for each frequency point

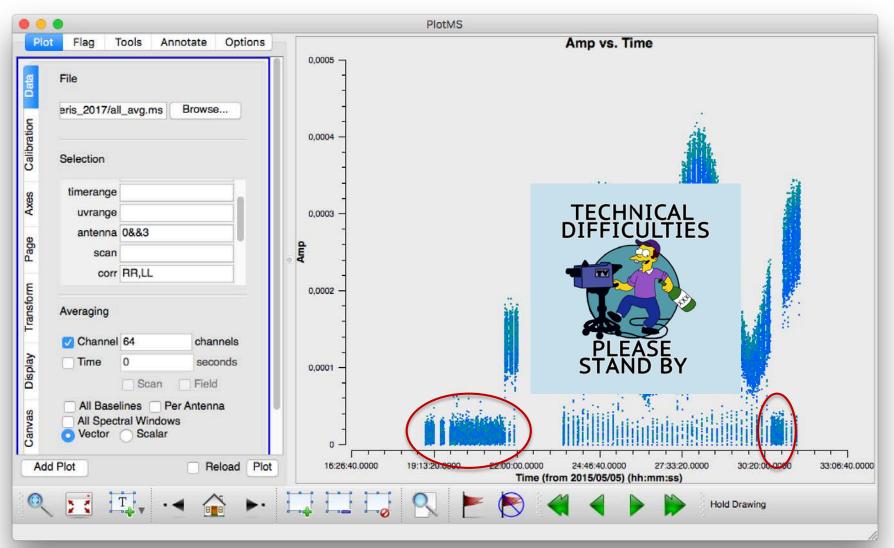
 $-(u, v) = B / \lambda$

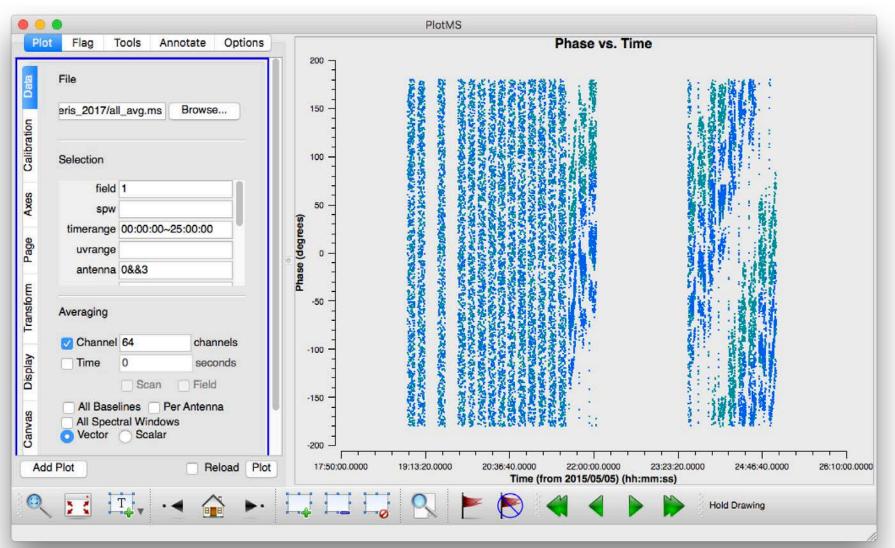
plotuv output

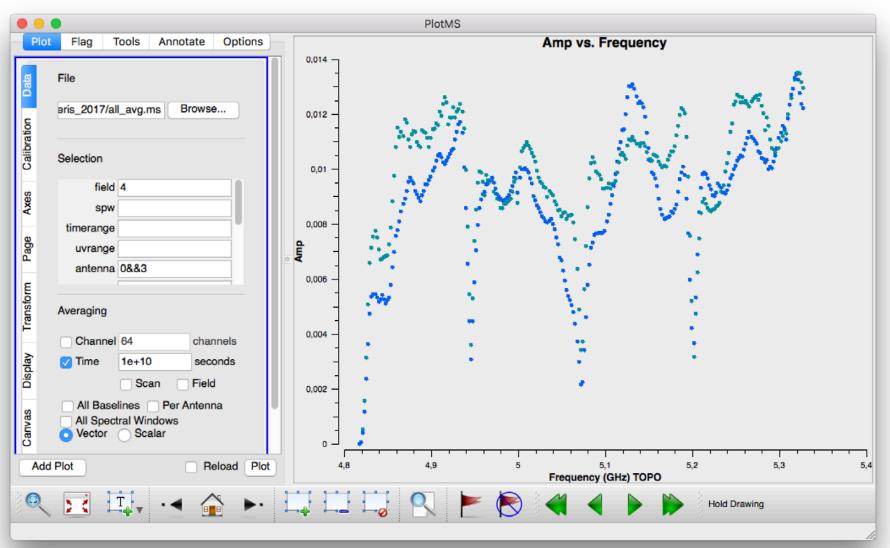



View data

- Relevant task is **plotms**
 - 2-D data plotter e.g. amplitude against frequency
- **plotms** is a very powerful task
 - Data can be selected on almost every property
 - Antenna, baseline, timerange, spw, correlation, ...
 - Data can be displayed in many different ways
 - >50 axis possibilities (time, frequency, phase, amplitude, ...)
- Very useful for:
 - Visualising data
 - Finding bad data


Example **plotms** output


Data to be 'quacked'


When radio telescopes go bad!

Noisy phase of bad data

Noisy channels

Flagging

- Some data normally needs to be deleted ("flagged")
- Typical reasons include:
 - Data taken whilst telescopes are off-source (slewing)
 - Many telescopes now flag this automatically
 - Edge channels of the spectral windows
 - Amplitude of these is usually lower
 - An antenna is not working very well or at all
 - Problem may be time-variable
 - May only affect some spectral windows
- Each problem is <u>usually</u> antenna-based and affects all correlations

Flag versions

- Relevant task is **flagmanager**
- Two main modes of operation:
 - Save current list of flags to a named version
 - Do this regularly!
 - Replace the current flags with those from a named version
 - In the unlikely event that you screw up!
- Versions are stored in a **.flagversion** directory
- Note the appearance of the 'mode' parameter
 - Inputs change depend on the selected mode

Flag data

- Relevant task is **flagdata**
- In 'manual' mode can flag extremely flexibly i.e. by
 - Field (source)
 - Spectral window (including sub-channels)
 - Antenna
 - Timerange
- Follow the guidelines in the script and flag the bad data
- We will not be able to do <u>all</u> the necessary flagging
 The aim is to familiarise you with the process

Final flagging

- All the flags are included in 'all_avg_1.flags'
 You should download this (see script)
- Apply these using flagdata
 - Use mode = 'list'

The data are now ready to be calibrated! (Tutorial 4 on Tuesday)

RadioNet has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562