
UK FPA Plans

Focal Plane Array Workshop 20-21 June 2005

Andrew Faulkner – University of Manchester

Systems

- OCRA
- Methanol Multibeam
- PHAROS
- Dual Polarisation All-Digital tile 2-PAD

EC Framework 5: FARADAY (2001)

- to produce affordable 2-D receiver arrays to be installed at the focus of large radio telescopes
- to greatly enhance the capabilities of the existing European radio astronomy infrastructure.
- horn arrays with radio frequency (rf) switching stages for high frequency continuum surveys (OCRA at 30 GHz)
- horn arrays with down-conversion stages for radio spectroscopy (IRA 18-24 GHz 7 beam system)
- phased arrays to synthesise multiple beams to improve the efficiency of individual telescopes and to open up the field-of-view. (ASTRON Faraday prototype)

OCRA A One Centimetre Receiver Array

University of Manchester

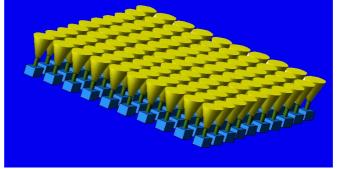
University of Torun

University of Bristol

What is OCRA?

- A ~100 beam wide-field focal plane array for surveying the sky at ~30 GHz
- Mounted on Torun 32m telescope & possibly on other telescopes eg Effelsberg 100m
- Source surveys: important foregrounds for CMBR
 : new types of radio source?
- Has possibilities for blind SZ surveys

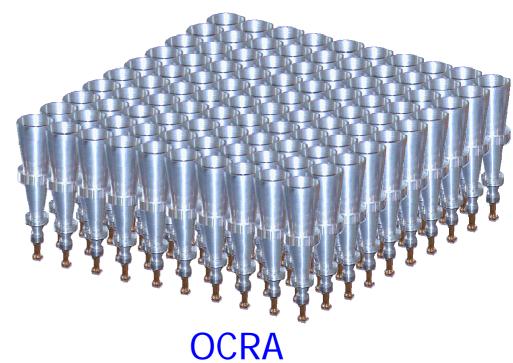
OCRA: concept

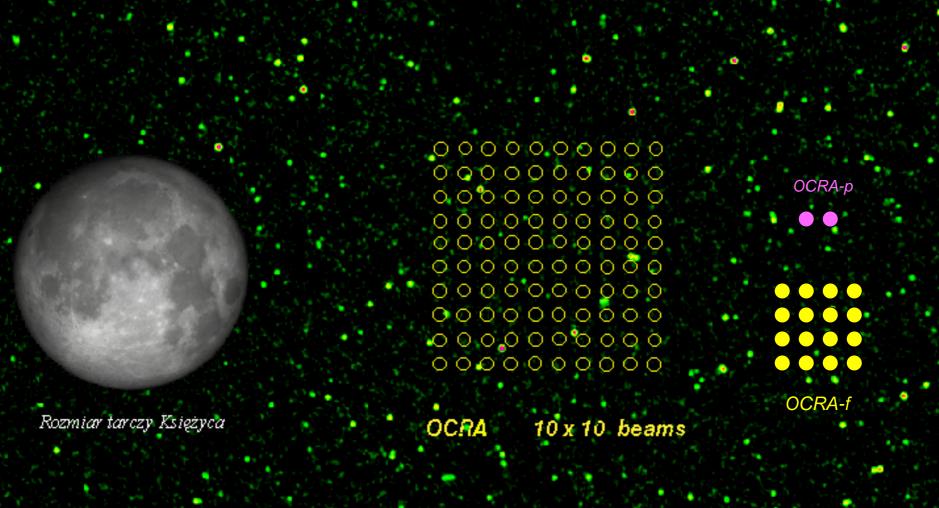


- Based on radiometers on Planck/LFI (similar to WMAP)
- Configured as 50 continuously-switched pairs
- Switching allows:
 - subtraction of atmospheric fluctuations
 - removal of semiconductor 1/f gain variations
- Pre-detection is all at RF (non-heterodyne)
 - Offers stability and cost advantages

OCRA on Torun 32-m

- beam size 1.2 arcmin
- minimum beam spacing 3 arcmin
- set by minimum size of feeds (8.5 cm)
- 10 x10 array ~85cm square


Progression



OCRA-f

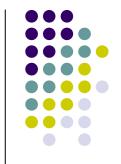
NVSS – NRAO VLA Sky Survey na 1.4.GHz Dec > -40deg, zawiera ~1.8 milionów radioźródeł!


Timeline

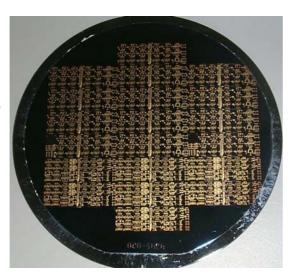
- Stage 1 (operating):
 - 2-beam system 2002-2004/5
 - proof-of-concept for receiver design
 - proof-of-performance of 32-m telescope
- Stage 2 (funded):
 - -16-beam system 2005-2007/8
 - develop MMIC technology enabling production of much larger system at realistic cost.
- Stage 3 (final system):
 - 100-beam system 2008→?

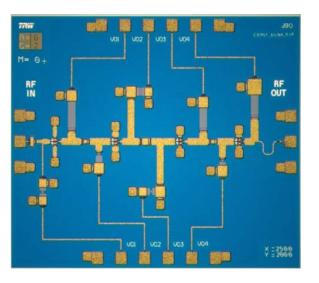
First operating prototype

"OCRA-p"

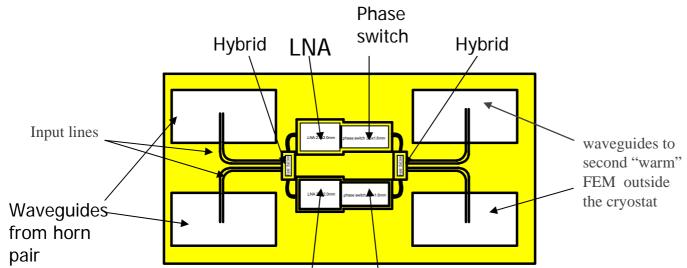


The next step "OCRA-f"

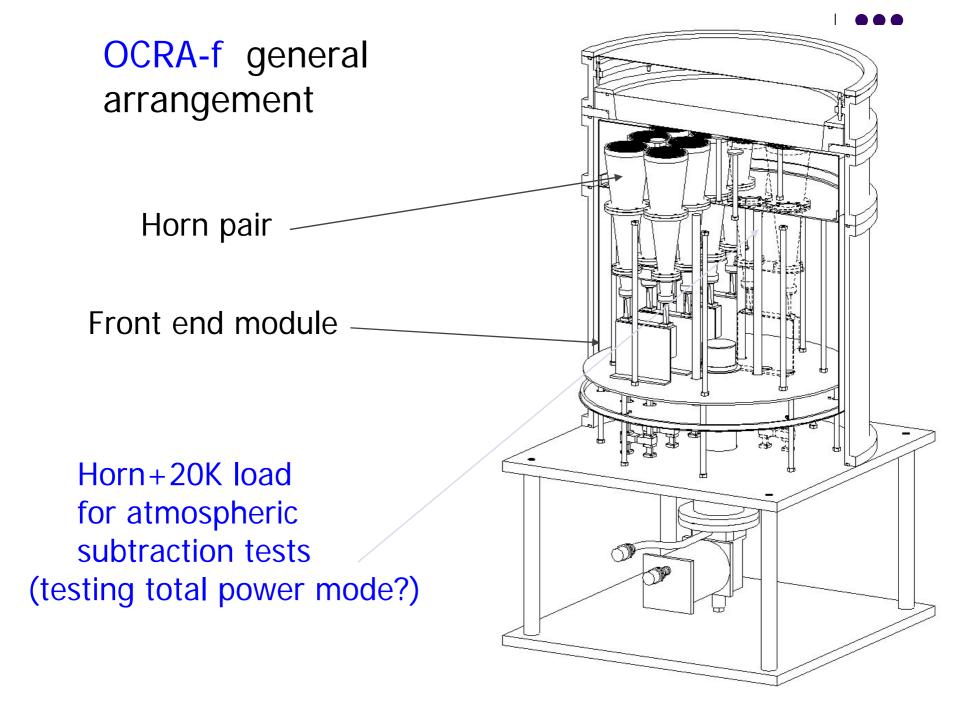



- Too expensive to scale OCRA-p to 100 beams
- European FP5 RTD project "FARADAY"
 - JBO, Italy, Netherlands, Poland, Australia
 - 16-beam OCRA-f module in Q3 2006

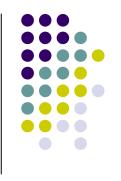
InP MMIC development with CSIRO



A Wafer



An LNA


Front-end module

Methanol Multibeam

- 7-Beam 6-7 GHz system
- Classic multi-horn array
- Spectroscopy & pulsars
- Joint development JBO/ATNF
- Mounted on Parkes end 2005
- Mounted on Lovell end 2007

PHAROS

- RadioNet JRA demonstrator project
- Co-ordinated by ASTRON
- Target cryogenically cooled phased array at 5GHz
- Analogue beamforming networks JBO+Birmingham
- Tests on existing EVN telescopes eg Westerboork, Lovell etc...
- Target 2007?

2-PAD

- Development within SKA Design Study (SKADS)
- Suitable for aperture array or focal plane array
- Full development in 4 years
- Innovative, dedicated front-end semiconductors

Design Objectives

- A 'tile' for the SKA as an aperture array
- Manfacturable up to 10⁶ devices
- Low cost
- Uncooled
- Good ambient temp performance
- Re-programmable
- Dual polarisation

2-PAD Target Specification

Size: ~1m x 1m

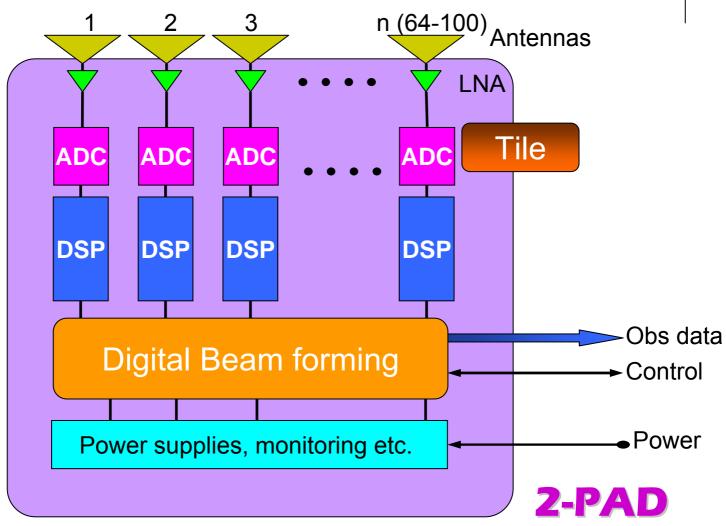
Frequency range: $0.5 \rightarrow 1.8 \text{ GHz}$

Bandwidth: >500MHz

Beamforming: All digital

Max scanning angle: ±60°

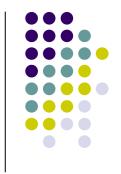
Polarisations: dual, residual error <40dB (total power)


System Temp: <50K at 1.4 GHz

Operating temp: Ambient

No. of FOV's: TBD

Outline Design


Why Digital?

- Wide bandwidth, uses true time delays
- RFI mitigation, can use sophisticated algorithms
- Many Fields-of-View (FOVs)
- Consistency, low temp variation and ageing
- Self-calibration capability
- Programmable implement new concepts

Re-configurable as a Focal Plane Array

Technologies to develop

- Cheap, dual polarisation antenna elements
- Close packed (<0.5λ) antenna elements
- Low cost, low noise high performance room temp LNA
- Low cost, very high speed, low power ADC
- Extremely high performance digital processing

Other Issues

- Self interference
 - Massive processing near sensitive front end
- Reliability
 - Essential for operating ____ity of _____ity
- Consistency
 - Calibration an Time du ssential
- Resistance to R
 - Alway sees a lower sees a lower
 - Satelles, mg e phones TV etc etc
 - Site selection a key feature

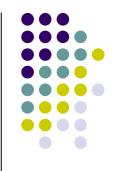
Antenna

- Close packed array
 - Causes mutual coupling
- Dual Polarisation
 - Complicates design
- Bandwidth >3:1
 - VSWR 1.1 @ 1.5GHz and ~1.5 @ 0.5GHz
- Very wide scan angle ±60°

LNA

- Optimised for low noise at room temp
- Coupling configured for chosen antenna
- Must compliment the ADC
- Robust to assembly and environment
 - High break down voltage
- High linearity
 - Avoid intermodulation products from RFI
- LOW COST

ADC


- Target 4G samples sec⁻¹
- Min 4-bit and max 8-bit conversion
 - Requirement determined from RFI studies
- Low power
 - Commercial devices >5 watt ea → 1KW for tile!!
- Customised interface to digital electronics
 - Reduce data rate to practical levels
- Low cost

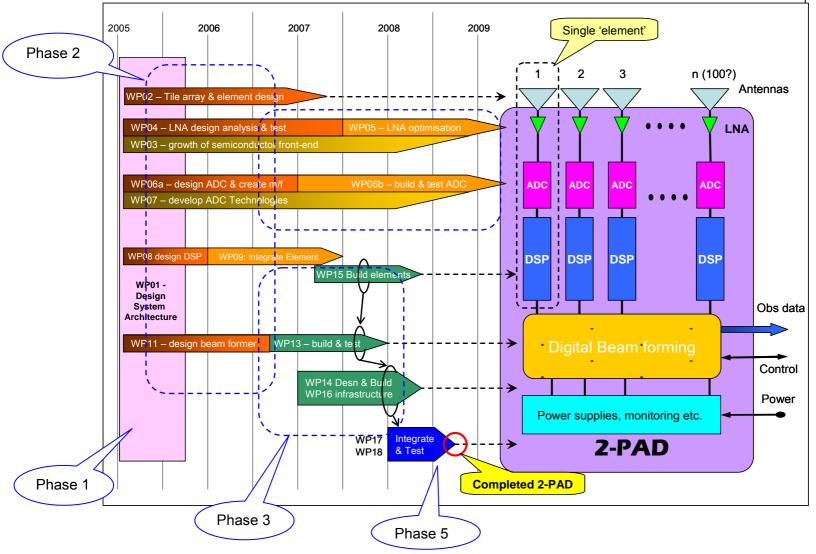
Digital Electronics

- Ideally process all the bandwidth at baseband
 - This is ~25Tops for a 100 element array!!
- Current obvious choice is FPGA
 - But relatively high power and cost
- Possible multi-processor solutions
 - Likely lowest power per MIP
 - Custom configurations in SKA?
- Commercial DSP's
 - Cheap processing but probably not fast enough

LNA & ADC implementation

- Develop custom semiconductors on custom substrate
- Use InP III/V material
- Optimised components for Radio Astronomy
- We have a unique facility in Manchester....

Optimal Device Fabrication



Oxford Instruments V100+ & V90H etc.
200 mm wafer size, multi x 100 mm
Si & III/V Technologies
Quantum manufacturability

2-PAD Plan – detail....

Potential Show-Stoppers

Fundamental Electromagnetic (Polarisation purity, constancy of output impedance etc.)

Study in 3 universities + industry

RF noise temp at ambient temps

Custom semiconductor devices

Impact of RFI

Siting + French SKADS study

Affordable high speed DSP

New technologies – FPGA, DSP, multi-processors per chip

Operation of SKA – reliability & maintainability

Involve industry early

The 2-PAD Team

Manchester: Antennas, semiconductors,

digital processing, infrastructure,

Manufacture

Oxford: Digital processing, antennas

Cambridge: Antennas, testing


SA/Australia: Demonstrator FPA systems

ASTRON: Antennas, testing

British Aerospace: Antenna testing and environmental

Qinetiq: Semiconductor design

Timeline

3Q05 Start project

3Q07 Prototype Antenna elements

LNA prototypes

4-bit functional ADC

Simulated and specified Digital electronics

3Q08 Operating antenna 'element'

(ant.-LNA-ADC-digital filter)

3Q09 Full 2-PAD system

- a lot of the people
- ideas, collaborations now we only need....

