The discrete charms of Redundant Spacing Calibration (RSC)

J.E.Noordam

Madroon Community Consultants (MCC)

Outline

- What is RSC?
 - Advantages
 - Limitations
- The place of RSC in the GST
 - Diagnostic tool
 - Fast first calibration stage
- A second youth for RSC?
 - Built into SKA

Interferometer

- Consists of two antennas that look at the same source
- Essentially measures the phase-difference between two points in the incoming wavefront
- Important: Baseline length and orientation
- An array of N antennas can form N(N-1)/2 interferometers

Interferometer

- Consists of two antennas that look at the same source
- Essentially measures the phase-difference between two points in the incoming wavefront
- Important: Baseline length and orientation
- An array of N antennas can form N(N-1)/2 interferometers

Redundant Baselines

- Two interferometers with the same baseline (length and orientation)...
- ...should measure the same phase
 - Any differences must be caused by instrumental errors
 - So these differences can be used for calibration
- ...provided their antennas "see" the same sky

WSRT: lots of redundancy

(because CLEAN did not exist yet in 1968)

Reduction of the number of unknown antenna phases

- 2 unknown phases (abs and gradient)
- 2 unknown phases (abs and gradient)
- 3 unknowns (2 abs, one gradient)

So: N(N-1)/2 (=10) data-samples share only 2 unknown phases

NB: 2D regular array: 3 parameters (abs phase and 2 gradients)

A single time-slot

The WSRT Dynamic Range skyrocketed

3C48 ~1980 WSRT 610 MHz 1:10000

GerFest, Dwingeloo, 8 nov 2013

Some serendipity: RSC gave you WIFI (!)

- Hamaker, O'Sullivan, Noordam (JOSA, 1977)
 - Only one of these three got rich

- Triggered by Muller and Buffington (JOSA, 1976)
 - The use of sharpness criteria in optical telescopes
 - They work best for a fully sampled aperture
 - Like a lens or a mirror
 - Because it has redundant spacings

The Blue Riband of Macho Imaging

- 1980: WSRT and "redundancy": DR = 10.000
- 1990: WSRT and NEWSTAR: 1.000.000
- 2010: WSRT and MeqTrees:
- 2013: EVLA and MeqTrees:
- 201x: LOFAR and SageCal....?
- ... but RSC did not play much of a role in all this...
 - (generalised selfcal with good sky models is enough)

2.000.000

VLA: no redundancy (N=27: 351 different baselines, closure errors)

Self-calibration (selfcal)

- Solving for (antenna-based!) instrumental errors by comparing the measured data with predicted values from a model of the observed field.
- Selfcal was a game changer technique:
 - it saved the VLA, and made VLBI possible
 - "generalised" selfcal is the basis of all these wonderful LOFAR images
- Invented by Cornwell and Wilkinson (Jodrell Bank, ~1980)
 - Selfcal, "hybrid mapping" and "closure phase" are all the same thing
- Locally stumbled upon by yours truly, by way of RSC
 - with help from John O'Sullivan, Johan Hamaker and Ger de Bruyn
 - (we initially missed it because of Wim's frugality)

Selfcal and RSC

- Both require the assumption of antenna-based instrumental errors
 - To reduce the number of unknowns
 - RSC has even fewer unknowns than selfcal (2 vs N)
- RSC is supposed to be sky-model-independent
 - Which makes it fast and "safe"
 - But RSC does still need a model to align time-slots
 - i.e. to equalise their position and total flux
 - We tried to use the centre-of-flux of the entire field for that
- RSC may be seen as an extra constraint on selfcal

Problems with RSC

- Different antennas "see" a different sky
 - More so for more ambitious (macho) imaging
- RSC can't deal with Direction Dependent Effects (DDE)
 - E.g. station beam-shapes, or the ionosphere
- Redundant baselines reduce the uv-coverage
 - Only a problem for arrays with few elements

The Known Unknowns (for a single time-slot)

The Unknown Knowns (for an entire observation)

A second youth for Redundant Spacing Calibration?

LOFAR superterp redundancy

LOFAR HBA station redundancy (used for HBA station calibration)

2D array of 144 antennas that share only 2 unknown phases!

Redundancy for SKA? (advocated by the Man Himself)

- Easily achieved for the central 3 km or so
- Stations (and even antennas) on single flat grid
 - Fully filled grid: sensitivity
 - Fully sampled uv-plane: imaging
- Powerful diagnostic tool
- Rapid initial calibration
- The idea of an "FFT telescope" (Tegmark and friends)
 - No gridding needed (except to apply DDE's...?)

Rectangular Array

** RectangularArray "test": nant=49 nifr=1176 nbasel=84

Optimised

** RectangularArray "test": nant=25 nifr=300 nbasel=81

Stations and Antennas

all on the same grid

** Monster "monster": nant=180 nifr=16110 nbasel=1309

Enjoy...