Absorption studies of high redshift galaxies

Jayaram N Chengalur NCRA/TIFR

Briggs, de Bruyn, Vermuelen A&A 373, 113 (2001)



#### Mapping a $z \sim 0.437$ absorber



(Kanekar & Chengalur, some day)

## HI absorption towards DLAs

- The 21cm absorber towards 3C196 was discovered by Brown & Mitchel (1983) via a blind search using the NRAO 300ft dish.
  - Most subsequent sources of 21cm absorption have been found by searching for absorption towards known Damped Lyman- $\alpha$  Absorbers (DLAs)
- At an HI column density of  $\sim 2~\times 10^{20}$  the bulk of the gas is neutral
  - The optical depth in Ly- $\alpha$  for gas with such high column densities is very high, even in the Lorenzian wings of the lines
- Such gas produces a wide Ly- $\alpha$  absorption, which can be easily detected using ground based optical spectra
  - For z  $\geq$  1.6 (i.e. at redshifts where the Ly- $\alpha$  line shifts into the optical band)



### Radio Observations and the Spin Temperature

- The HI column density can be estimated from the width of the Ly- $\alpha$  line
- If the background quasar is radio loud, then  $\tau_{21}$ , the HI 21cm optical depth can also be determined
- $N_{HI} = 1.823 \times 10^{18} \frac{T_s}{f} \int \tau_{21}(v) \, dv$ 
  - Where f is the covering factor and T<sub>s</sub> is the "spin temperature"



# The Spin Temperature

- In the general case of an inhomogeneous multi-phase absorber T<sub>S</sub> is the column density weighted harmonic mean of the spin temperatures of each phase
   True for both optically thick and optically thin absorbers
- For e.g
  - 50% CNM (80K) 50 % WNM (6000K)  $T_s \approx 158$  K
  - 10% CNM (80K) 90 % WNM (6000K)  $T_s \approx 715 \text{ K}$
- T<sub>s</sub> carries information on the distribution of gas in different phases

Kanekar et al. ApJL (2011)

# T<sub>s</sub> in the Milky Way

• Low values of T<sub>S</sub> ( $\approx$  250K) are typical of lines of sight with N<sub>HI</sub>  $\geq 10^{20}$ 

- Indicative of a threshold for the formation of the CNM
  - Related to providing adequate self shielding to UV radiation?



# $T_s$ in DLAS

- T<sub>s</sub> estimates are now available for 37 DLAs
  - DLAs at z > 2 typically have  $T_s$  upper limits  $\approx 1000$  K
- 4.2σ evidence for a redshift evolution of T<sub>s</sub> in DLAs
  - $T_s$  in DLAs and the galaxies differ at a  $6\sigma$  significance



# T<sub>s</sub> and Metallicity



- Metallicity ([Z/H]) estimates are available for 29 DLAs for which T<sub>s</sub> has been measured
  - Non parametric Kendall-tau test indicates a 3.5 significance for the anti-correlation between T<sub>s</sub> and [Z/H]

# Implications of high Ts for the DLA host galaxies

- In two phase models one expects a smaller CNM fraction at low pressures and low metallicities
- High T<sub>s</sub> (i.e. low CNM fraction) in high redshift DLAs is consistent with models in which the hosts are small, metal poor galaxies

(Wolfire et al. 1995, ApJ)



Chengalur & Kanekar 1999, MNRAS

# Do the fundamental constants vary?

Chengalur, de Bruyn, Narasimha A&A (1999)

# OH Absorption at $z \sim 0.89$

- HI and OH detected in absorption in the gravitational lens at z ~ 0.89 towards PKS 1830-21
- First detection of OH at cosmological distances
  - Both main lines seen in absorption
- HI and OH absorption was used to construct a kinematical model of the galaxy

L82

J.N. Chengalur et al.: HI and



# **Fundamental Constants**

- Theories such as GR, the Standard Model etc. have some free parameters, e.g.
  - c,ħ,G, etc.
- The values of these parameters ("fundamental constants") are determined from observations
- It is assumed that the values of these constants do not vary with time
- A check for the constancy of these models is hence a check of the fundamental correctness of the theory
  - Similar to tests for violation of the equivalence principle etc.

# **Dimensionless Constants**

- Tests generally involve dimensionless constants
- Units themselves are defined in terms of these constants
   working with dimensionless combinations avoids confusion
- e.g.

 $\alpha = e^2/\hbar c$ 

- measure of the "strength" of electromagnetic interaction
- Frequency atomic spectral lines depends on the value of lpha
- $\mu = m_e/m_p$
- Frequency of rotational transitions in molecules depends on  $\mu$

# Astrophysical methods

- Compare the observed line frequency to the expected one
  - Difference implies variation in the value of the fundamental constant
- Observed line frequency depends on the (unknown!) redshift
- One needs to observe at least two lines
  - One to determine the redshift
  - the other to measure any possible change.
  - Lines have to have different dependence on the fundamental constants
- Narrow absorption lines from cold gas are best suited for precise frequency (redshift) measurements.



# **Optical Spectral Lines**

- The fractional separation between the alkali doublet (e.g. Si IV, MgII) lines  $\Delta\lambda/\lambda^\sim\,\alpha^2$ 

(e.g. Murphy et al. MNRAS, 327, 1237, 2001)

- (Many Multiplet) Relativistic first order corrections lead to different fine structure transitions in different species having different dependencies on α
  (Dzuba et al. 1999, Phys. Rev. Lett.)
  - The MM method gives lower statistical errors, but larger systematic ones, e.g.
    - calibration errors on different echelle orders,
    - kinematical velocity shifts between species
      - Doppler shift corresponding to  $\Delta V \sim 10$  km/s =  $\Delta z/z \sim 10^{-5}$
    - Isotopic abundance variations

1

٠

#### **OH 18cm radio lines**

TATAN

119µm

J = 3/2

1720

1667

1612 1665

F=2

F=1

F=2

F=1

- OH emits 4 spectral lines with  $\lambda \sim 18$ cm
  - lines arise from a combination of Λ doubling and hyperfine interaction
  - Line frequencies hence depend on  $\alpha$ ,  $\mu$ , g<sub>p</sub>

#### **Constraints from OH measurements**

- Comparison of the redshifts of the OH main  $(\Delta F=0)$  lines with redshifts of the HI 21cm (hyperfine) transition and CO mm (rotational) transitions allows one to simultaneously constrain  $\Delta \alpha / \alpha$  and  $\Delta \mu / \mu$  and  $\Delta g_p/g_p$
- If one assumes that  $\Delta g_p/g_p$  is small (e.g. Langacker et al. 2002) then one gets
  - $-\Delta \alpha / \alpha = -5.0 \pm 1.5 \times 10^{-6}$
  - $\Delta \mu / \mu = 4.2 \pm 2.2 \times 10^{-6}$
- Results are subject to possibility of kinematical shifts between HI, OH and CO absorbing gas.



Chengalur & Kanekar PRL 91, 241302 (2003)

# **Conjugate OH lines**

F. [Jy]

- The OH 'satellite' (ΔF=±1) lines are sometimes "conjugate" i.e. have same spectral shape, but opposite signs
  - Consequence of selection rule driven "competitive pumping"



van Langevelde et al. (1995)

v<sub>hel</sub> [km/s]

# Fundamental Constant Variation from Conjugate OH line

- Since line shape is the same, non parametric, cross correlation techniques can be used to determine spectral shifts
  - High level of independence from systematic effects (kinematic Doppler shifts, isotopic
  - variations, calibration errors...)
  - Can derive significant constraints from a *single* object





1720 absorption.

(Elitzur 1976, ApJ;

van Langevelde et al. 1995, ApJL)

#### **Conjugate OH lines from Centaurus A**

van Langevelde et al. (1995)



Cross correlation of Centaurus A (z  $\sim$ 0) lines gives expected null result ( $\Delta V = 50 \pm 110$  m/s)

Kanekar, Chengalur & Ghosh PRL 93, 051302, (2004)

# Conjugate OH lines at cosmological distances

- First detection of conjugate lines at cosmological distances was for PKS1413+135, (z= 0.247)
- Data constrain  $G \equiv g_p [\alpha^2 \mu]^{1.849}$
- Original data leads to  $\Delta G/G = 2.2 \pm 3.8 \times 10^{-5}$



# Deep Arecibo observations of the satellite lines

- 125-hour Arecibo integration between 2010 and 2012.
  - Velocity resolution ~ 90 m/s.
- Double position-switching for bandpass calibration
  - rms decreases as  $\sqrt{t}$
- Spectral dynamic range ~ 3000 to 1 per 180 m/s channel.
  - Among the most sensitive radio spectra ever obtained!



Kanekar, Chengalur, Ghosh (2013)

#### A DEEP ARECIBO INTEGRATION ON 1413+135



## CURRENT RESULTS

- New Arecibo result: Velocity offset =  $(-20 \pm 59)$  m/s
  - $[\Delta G/G] = (-0.9 \pm 2.9) \times 10^{-6}$   $G \equiv [\alpha^2 \mu]^{1.85}$

- Final weighted average:
  - $[\Delta \alpha / \alpha] = (-9.9 \pm 6.6) \times 10^{-7}$ • If  $[\Delta \mu/\mu] = 0$
  - If  $\left[\Delta \alpha / \alpha\right] = 0$
- $[\Delta \mu / \mu] = (-1.9 \pm 1.3) \times 10^{-6}$

# Thank you

# **Radio Techniques**

- HI-21cm and optical resonance lines
  - $X \equiv g_p[\alpha^2/\mu]$  (Wolfe et al. 1976, Phys. Rev. Lett.)
- OH-18cm and HI 21cm lines
  - $X \equiv g_p[\alpha^2/\mu]^{1.57}$  (Chengalur & Kanekar2003, Phys. Rev. Lett.)
- Inversion and rotational lines:
  - $\mu^{3.46}$  (Flambaum & Kozlov 2007, Phys. Rev. Lett.)
- "Conjugate" satellite OH-18cm lines
  - $F \equiv g_p [\alpha^2/\mu]^{1.85}$  (Kanekar et al. 2004, Phys. Rev. Lett.)

A DEEP ARECIBO INTEGRATION ON 1413+135 2.2 Cross-correlation ×10<sup>3</sup> 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 861.2 2.17 2.16 -0.50.5 Velocity offset • The cross-correlation peaks at an offset of  $(-20 \pm 59)$  m/s.

• Error on the offset estimated via a Monte Carlo analysis.

Kanekar et. al. ApJ (2010)

# Constraints from deeper WSRT and Arecibo data

- $(\Delta G/G) = (-1.18 \pm 0.46) \times 10^{-5}$ - G = g<sub>p</sub> ( $\mu \alpha^2$ )<sup>1.85</sup>
- tentative evidence (2.6 σ) for a smaller value of α, μ, and/or g<sub>p</sub> at z ~ 0.247,

lookback time of ~2.9 Gyr.

If we assume that the dominant change is in  $\alpha$ , this implies  $(\Delta \alpha / \alpha) = (-3.1 \pm 1.2) \times 10^{-6}$ .

