Solar Imaging and Space Weather

using MWA and RAPID

Colin Lonsdale

MIT Haystack Observatory

Gerfeest, 5 November 2013

MWA - The Finished Array

Dynamic Spectrum (One MWA baseline)

Extreme Spectral Variability

Radio Movie

16 May, 2013 04:11:04 – 04:16:00 UT

 u_0 =153.905 MHz Δv =640 kHz

 Δt =1 second

Imaging Dynamic Range ~1500

-X (orcsec)

_20 ADO

_606

The 'Carrington Event': Aug 27 - Sep 7, 1859

Boston MA to Portland ME telegraph line Sept 2, 1859

"We observed the influence upon the lines at the time of commencing business — 8 o'clock — and it continued so strong up to 9 1/2 as to prevent any business from being done, excepting by throwing off the batteries at each end of the line and working by the atmospheric current entirely!"

NY Times

Operator exchange:

BOS: Mine is also disconnected, and we are working with the auroral current. How do you receive my writing?

POR: Better than with our batteries on..

Very well. Shall I go ahead with business?

The 'Carrington Event': Aug 27 - Sep 7, 1859

Locations where aurora was visible (Green, 2008)

Solar and Heliospheric Science

CME Synchrotron

Figure 7 - the left panel shows a snapshot of the radio CME at 164 MHz at the time of maximum flux. The background emission from the Sun has been subtracted. Time variable radio emission from a noise storm is present to the northwest. The image has been saturated at 0.04 SFU/beam, corresponding to a brightness temperature of 2.6×10^5 K. The spectral index measured between 164 MHz and 236.6 MHz at a few locations is also shown. The right panel shows the spectra measured at the four points marked in the left panel in SFU/beam. Model spectra fits based on optically thin synchrotron radiation are also shown. (adapted from Bastian et al. 2001).

Sources of Faraday Rotation

Galactic Synchrotron Polarimetry

• MWA 32-tile prototype data at 189 MHz

• Bernardi et al. 2013

× 100

RAPID - What is it?

- Low frequency radio array, 48-600 MHz
- ~100 solar-powered, portable antennas
- No copper <u>or</u> fiber connections
- Local storage of voltage samples at each antenna
- Imaging interferometry performed offline
- Low-cost setup and breakdown
- Highly portable and reconfigurable
- <u>Extreme flexibility</u> for targeted science experiments

SKALA-R Antenna General Architecture

- Element Supported (no central support structure)
- Modular top section (Contains antenna top elements and LNA housing)
- · Base mounted power and recording sub systems
- · Centrally routed RF cables

Rapid Recorder System General Architecture

- · Data recording system is split into two part;
 - Upper section (green) houses the recording hardware
 - Lower section (black) houses the power controller and battery pack.
- Data recording system has 2 data connection ports (either USB or Ethernet with PEO) and 2 SMA quick connect fittings.
- Power controller section includes 4 solar panel connection points and two Ethernet ports that are POE compatible.

Portable and Reconfigurable

- Use the built in bubble level and the red leveling knobs to coarsely level the system.
- Hang the plum bob from the antenna top section and use it to finely level the system.

- Rapid systems will be shipped in purpose built crates.
- 4 rapid systems per crate
- Crate meets UPS and Fedex guidelines for shipping
- Each crate will be 60'H 40'W 47'D which meets the standard shipping size for most countries. (larger crates can be used if willing to pay oversize pallet charges)

RAPID Prototype Development

Passive Radar Interferometry and Imaging

Meteor Trail Detection, Coherence, and Cross phase

Two Antenna Passive Radar Interferometry for RAPID prototyping activities

Imaging with 16 SKALA antenna elements is next!

Signal-to-Noise

- Sample calculation at 150 MHz:
 - At 150 MHz, quiet sun ~10⁵ Jy
 - -With 1000 pixels (~30x30, ~1 arcmin), each pixel has ~100 Jy
 - MWA noise in 1 sec, 1 MHz ~1Jy
 - RAPID gain will be ~10% of MWA gain
 - SNR on quiet solar disk ~10 in 1 sec
- RAPID can see thermal solar disk at 1 arcmin resolution in 1 second with 1 MHz bandwidth
- Active solar features are *much* brighter, and are localized, high SNR in <<1 sec, <<1 MHz

At 1 arcminute, 100 RAPID antennas have enough sensitivity for good solar imaging

Resolution

- Solar disk is 30-60 arcmin at upper/lower freqs
 Information on >1 degree scales not needed
- Coronal scattering smears images at arcmin level

 But scattering is asymmetric
 Very compact structures can and do exist
- 1 arcminute resolution is scientifically valuable across the RAPID frequency range
- Implied array extents range from ~1.7km at 600MHz to ~20km at 50 MHz
 - -These are large, logistically challenging configurations

Full uv-plane Sampling

- Solar emission can be very complex
 - -in individual time/frequency segments
 - uv coverage required instantaneously and monochromatically
- For ~1 arcmin resolution, need each uv sample from a ~100 element array to be independent on a ~60λ grid (1° FOV)

-4950 independent visibilities on 3600 grid points

- -Ensures proper over-constraint for precision imaging
- Configurations with strong central condensation on the ground or in the uv plane are not favored

RAPID configuration for solar imaging

• Custom solution:

-Reuleaux triangle with "dither"

- -Scale with frequency as needed
- -Tapering (apodizing) an option as needed

⇒ extraordinary uv plane ⇒ sampling, high DR imaging at optimum resolution

Summary

- The MWA works
 - -and it works really well for solar imaging
- The Sun is a really interesting radio source
 - -Spectrally and temporally complex
 - Rich phenomenology
 - Important contributions possible from low frequency radio
- Space weather is a big deal (and source of \$\$)
 Polarized galactic background is key
- RAPID allows new levels of array optimization

 Very potent for solar studies
 - Can also be used for galactic synchrotron imaging