Recombination Line Studies with LOFAR

A Theoretical Perspective

Leah Morabito

Francisco Salgado, Raymond Oonk, Adam Deller George Miley, Huub Röttgering, Xander Tielens

The Radio Universe @ Ger's (wave)-length

5 November, 2013

Motivation

Different Phases of the ISM

Motivation

Leah Morabito

RRLs & 4C41.17

Motivation

Questions:

- 1 How do you go from measured spectrum to gas properties?
- 2 How tight are the constraints on the gas properties?
- 3 Can we expect to obtain detections at z > 0?

Recombination Lines

Hydrogen

Rydberg Atom

- Outermost electron in high-n state
- Sees nucleus with +1 charge
- "Hydrogenic"

Rydberg Atom

- Outermost electron in high-n state
- Sees nucleus with +1 charge
- "Hydrogenic"

Dielectronic-like Recombination

Dielectronic-like Recombination

 ${}^{2}\mathrm{P}_{3/2}$

 $^{2}P_{1/2}$

Free e⁻ can give $\Delta E = 0.0079 \text{ eV}$ to ${}^{2}P_{1/2}$ and still recombine with negligible binding energy

 $\Delta \mathbf{E} = 0.0079 \text{ eV}$ = 92 K

Building the Non-LTE Model

1. Set ${\rm T}_{\rm e}$ and ${\rm n}_{\rm e}$

2. Populate levels up to $\mathbf{n}=2000$ assuming LTE

$$N_n^* = n_e N_{ion} \left(\frac{h^2}{2\pi m_e k T_e}\right)^{3/2} \frac{w_n}{2} e^{\chi_n}$$

3. Define ambient radiation field $(S_{\nu} \propto \nu^{-\alpha})$

4. Populate / depopulate levels

- Collisional: level transitions, recombination, ionization
- Radiative: recombination (+ cascade downwards)
- Spontaneous: emission
- Induced: emission, absorption
- Dielectronic-like recombination
- 5. Calculate departure coefficients
- 6. Calculate optical depth

S
$$N_n = b_n N_n$$
 $u \propto rac{\mathrm{d} \, \mathrm{ln} b_n}{\mathrm{d} n}$

 $\int \tau_{\nu} d$

Model Results

Model Results

Column Density

Line intensity

Leah Morabito RRLs & 4C41.17

Line intensity + width

Line intensity + width

RRLs in Extragalactic Sources

Unique probe of the cold Interstellar Medium

Observe ISM in radio galaxies up to $\mathbf{z} = \mathbf{4}$

RRLs in Extragalactic Sources

RRLs in Extragalactic Sources

Summary

1. Recombining $\rm C\,II$ can be successfully modelled as a Rydberg atom

2. $\mathbf{T}_{e}, \mathbf{n}_{e}$ can be constrained to within an order of magnitude

- By combining line width and intensity constraints

3. Look forward to exciting extragalactic results!

Questions?

Line Width

An additional constraint