AST (RON

A multifaceted study of the Lockman Hole region: from HI to LOFAR

Raffaella Morganti ASTRON (NL) and Kapteyn Institute (Groningen)

with the major contribution from: **I. Prandoni, G. Guglielmino**, K. Gereb, E. Mahony, I. van Bemmel

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Netherlands Institute for Radio Astronomy

Tuesday, 5 November 13

This talk

Faint (sub-mJy) radio population, their spectral index and the HI content

 Nature and properties of the faint radio population: AGN vs SF Relevance of faint radio AGN for feedback

Gas content (for the low redshift z < 0.1 population)

The Lockman Hole: faint radio population, their spectra index and the HI content

 Nature and properties of the faint radio population: AGN vs SF. Relevance of faint radio AGN for feedback.

From recent studies:

High frequencies: Flatter spectral indices and larger dispersions at high frequencies (from 1.4 to 20 GHz) at sub-mJy radio fluxes, suggesting that core-dominated AGN are playing a key role in the sub-mJy radio population. [e.g. Prandoni+ 2006, Whittam+ 2012]

Low frequency studies (0.3 – 0.6 – 1.4 GHz): important for investigating the presence of synchrotron self-absorbed mechanism Existence of flattening is controversial. Flattening more significant for compact (<3") sources. optically thin (steep spectrum) or self-absorbed (flat spectrum) synchrotron emission.

The Lockman Hole: faint radio population, their spectra index and the HI content

- radio AGN for feedback.
- Gas content (for the low redshift z < 0.1 population)

- Multi-wavelength information and radio spectral indices to constrain the origin of the radio emission in sub-mJy radio sources. Importance of very low frequencies (30-200 MHz), where self-absorption phenomena are expected to be very important.

- Use the broad band @21cm to extract HI spectra and do stacking => derive the HI content of galaxies with z up to 0.1, compared to their optical and radio properties (using SDSS spectra)

• Field of choice: Lockman Hole => high Dec (ideal for WSRT and LOFAR observations), a lot of ancillary data

• Observations: WSRT 1.4 GHz (160 MHz, covering redshift range 0 - 0.1) and 325 MHz LOFAR 150 MHz (commissioning & Cycle 0), 60 MHz (Cycle 0)

• Nature and properties of the faint radio population: AGN vs SF. Relevance of faint

Lockman Hole region WSRT Mosaic @ 1.4 GHz

59°00′

30

58°00′

30

nr

57 00

ട൙്ററ

16 pointings (6.6 sq.degr.)

rms ~11 µJy (central 2 sq degr)

About 6000 sources with $S > 55 \mu$ Jy

Source counts complete down to 70-80 µJy

Largest field imaged at such depth

Guglielmino, Prandoni, Morganti, Rottgering, Jarvis, Garrett 2013, A&A in prep

Lockman Hole region WSRT Mosaic @ 1.4 GHz

59°00′

30

58°00′

30

57°00

FEOA

16 pointings (6.6 sq.degr.)

rms ~11 µJy (central 2 sq degr)

About 6000 sources with S>55 μ Jy

Source counts complete down to 70-80 µJy

Largest field imaged at such depth

Guglielmino, Prandoni, Morganti, Rottgering, Jarvis, Garrett 2013, A&A in prep

Lockman Hole region WSRT Mosaic @ 1.4 GHz

59°00′

30

58°00′

30

57 00

ട൙്ററ

16 pointings (6.6 sq.degr.)

rms ~11 µJy (central 2 sq degr)

About 6000 sources with S>55 μ Jy

Source counts complete down to 70-80 µJy

Largest field imaged at such depth

Guglielmino, Prandoni, Morganti, Rottgering, Jarvis, Garrett 2013, A&A in prep

The Lockman Hole Region @ 345 MHz

Lockman Hole with LOFAR

Lofar commissioning => 6 hrs obs.

150 MHz Image (inner 2 sq. degr., 8"x4") from 60 of the 120 SBs.

3C244.1 subtracted

rms noise \rightarrow 1.5 mJy

152 sources extracted in the 1.4 GHz mosaic region (5σ).

Several counterparts of brightest WSRT 1.4 GHz sources are clearly visible.

First full resolution image of a deep field Guglielmino 2013 PhD thesis

Spectra index analysis: radio color-color plots (150 – 345 vs 610 - 1400 MHz)

Radio spectra are consistent with single power laws

 \rightarrow no significant spectrum curvature (< C > ~ 0), at least down to 150 MHz

 \rightarrow If self-absorption effects are in place, not very compact sources (>10 kpc)!

GHZ

÷

upturn | inverted 2 0 -2

This study (from commissioning data) is still limited to the strongest sources....

2

convex

steep

0

 $lpha_{
m 345~MHz-1.4~GHz}$

 $^{-2}$

Spectra index analysis: radio color-color plots (150 – 345 vs 610 - 1400 MHz)

Radio spectra are consistent with single power laws

 \rightarrow no significant spectrum curvature (< C > ~ 0), at least down to 150 MHz

 \rightarrow If self-absorption effects are in place, not very compact sources (>10 kpc)!

This study (from commissioning data) is still limited to the strongest sources....

Status of the New LOFAR data (Cycle 0) (150 and 60 MHz)

HBA: reduction in progress => 10SB, rms $\sim 2mJy/b$, 19x16" Peeling of 3C244.1 still to be improved

LBA: reduction in progress more problems with ionosphere HBA 11^h00^m

Abell 1132

Area of the Lockman Hole (Mahony et al. in prep)

 $10^{\rm n}50^{\rm m}$ Right Ascension (J2000) $10^{n}40^{m}$

HI content via stacking

Cold gas (HI) plays an important role in the formation and evolution of galaxies Main goals:

 Investigate relations between HI properties and other characteristics of the host galaxy (color, emission lines, SF & radio AGN properties)

• Evolution with redshift Stacking gives the opportunity to investigate the global HI properties beyond z = 0 with today telescopes

Preparation for higher-redshift HI surveys (Apertif, ASKAP, MeerKAT...)

Geréb K., Morganti R., Qosterloo T.A., Guglielmino G., Prandoni I., 2013, A&A 558, 54

Stacking in the LH field: piggyback from the continuum observations

WSRT observations using 160 MHz band (1300 - 1460 MHz), 1024 chans => coverage 0<z<0.09, velocity resolution 60 km/s

We use the HI spectra for stacking: z < 0.09

Cross-correlation with SDSS spectroscopic catalog: 120 sources in total, 50 sources with radio continuum, IR Spitzer data

Noise level:

- initially ~ 0.150 mJy/beam/chan
- after stacking ~ 20 μ Jy

Stacking in the LH field: piggyback from the continuum observations

WSRT observations using 160 MHz band (1300 - 1460 MHz), 1024 chans => coverage 0<z<0.09, velocity resolution 60 km/s

We use the HI spectra for stacking: z < 0.09

Cross-correlation with SDSS spectroscopic catalog: 120 sources in total, 50 sources with radio continuum, IR Spitzer data

Noise level:

- initially ~ 0.150 mJy/beam/chan
- after stacking ~ 20 μ Jy

Stacking in the LH field: piggyback from the continuum observations

WSRT observations using 160 MHz band (1300 - 1460 MHz), 1024 chans => coverage 0<z<0.09, velocity resolution 60 km/s

We use the HI spectra for stacking: z < 0.09

Cross-correlation with SDSS spectroscopic catalog: 120 sources in total, 50 sources with radio continuum, IR Spitzer data

Noise level:

- initially ~ 0.150 mJy/beam/chan
- after stacking ~ 20 μ Jy

Radio sources and stacking

• Inactive (in terms of optical emission lines) galaxies are not detected in HI seems to be connected with **SF**

• But: two groups based on 24 µm emission properties (tracer of the warm dust component associated with current star-formation in galaxies) => LINERs detected at 24 μ m show relatively large amounts of HI, no detection for the other group

Radio sources in the IR inactive region are the best candidates for hosting low-luminosity radio AGN

Geréb K., Morganti R., Oosterloo T.A., Guglielmino G., Prandoni I., 2013, A&A 558, 54

• To first order (and for the low redshift range) => for the majority of radio LINERs, the radio emission

Conclusions and future perspectives

LH region: 3 new radio catalogues obtained: 1.4 GHz, 345 MHz and 150 MHz.

No significant curvature found in the source spectra down to 150 MHz => (bright) sources analised so far have sizes >10 kpc.

=> Analysis to be extended to lower flux and frequency with Cycle 0 and new Cycle 1 observations (LBA and HBA).

[+ extensive multi-waveband information (optical/IR, MIR/FIR), photo-zs and galaxy types]

Piggyback HI stacking => feasibility proved (Gereb et al. 2013) => approach could become standard in all future radio surveys at L-band

- For the majority of <u>radio LINERs (and for SF galaxies</u>), the radio emission appears to be connected with star formation
- low-luminosity radio AGN => to be confirmed with high resolution data

=> Analysis extended to larger sample (including Galex data) and results so far confirmed

Radio sources in the IR Inactive region (no 24 μ m and HI detection) are the best candidates for hosting

