Ghostbusted

O. Smirnov, T. Grobler (Rhodes U. & SKA SA) C.D. Nunhokee (Rhodes U.)

Ghosts Of Selfcal Past

The early mystery: WSRT 92cm observation of J1819+3845 by Ger

- String of ghosts connecting brightest source to Cyg A (20° away!)
- "Skimming pebbles in a pond"
- Positions correspond to rational fractions (1/2, 1/3, 2/3, 2/5, etc...)
- Wasn't clear if they were a one-off correlator error, a calibration artefact, etc.
 - (...and if you did lowfrequency in 2004, you had it coming to you anyway.)

2010: Ghosts Return

WSRT <u>21cm</u> observation (QMC2 field)

- ...with intentionally high pointing errors
- String of ghosts through dominant sources A (220 Jy) and B (160 mJy)
- Second, fainter, string from source A towards NNE
- Qualitatively similar to CygA ghosts
- Went away after DD calibration & repeated selfcal

Ghostbusters (CALIM 2010)

Ghosts reproduced via simulations

Ghosts In The (Selfcal) Machine

- Ghosts arise due to missing flux in the calibration sky model
- Mechanism: selfcal solutions try to compensate for this by moving flux around
 - Not enough DoFs to do this perfectly
 - ...so end up dropping flux all over the map
- Regular structure suspected to be due to WSRT's redundant layout
 - JVLA, MeerKAT: "random" (but not Gaussian!)

JVLA Ghost Sim

Ghastly Mysteries

- Shown empirically (2010) but not understood:
 - Why do they form on lines passing through unmodelled sources?
 - Why do they sit on rational fractions?
 - Why do they have different PSFs?
 - Why do they seem to scale with the missing flux, but not with the model flux?

Understanding Ghosts

- Results suggest ghosts are fundamental to selfcal
 - ...and we really couldn't let Ger retire with the mystery unsolved
- Trienko Grobler and Ridhima Nunhokee worked on the problem

Fundamentals

Correction:

 $\mathcal{R}_{\rm corr} = G^{-1} \mathcal{R} G^{-H} = \mathcal{G}^{\top} \odot \mathcal{R}$

inverse

5/11/2013

Ghostbusted - Gerfeest 5/11/2013

The Simplest Case

R: two point sources (1 Jy at centre, <1 at l₀, m₀)
 M: 1 Jy source at centre = matrix of all ones

$$\mathcal{R} \leftarrow \mathcal{G}, \quad \mathcal{G} = \vec{g}\vec{g}^H$$

"calibrated sky"

- Conventional calibration: "←" is an LSQ fit of offdiagonal terms (=Gaussian ML)
 - (though: see robust calibration, Kazemi & Yatawatta)
 - what does it do? God only knows, very difficult to understand analytically...
 - ...some crucial insights were needed

Some Familiar Names...

GAIN DECOMPOSITION METHODS FOR RADIO TELESCOPE ARRAYS

A.J. Boonstra^{1,2} and A.J. van der Veen²

¹ASTRON, Netherlands Foundation for Research in Astronomy Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands Tel: +31(0)521 595100, fax: +31(0)521 597332, email: boonstra@astron.nl

² Department of Electrical Engineering, Delft University of Technology Mekelweg 4, 2628 CD Delft, The Netherlands Tel: +31(0)15 2781372, fax: +31(0)15 2786190, email: allejan@cas.et.tudelft.nl

(Boonstra A.J., van der Veen A.J., 2003, IEEE Trans. Sig. Proc., 51, 25)

7. REFERENCES

- H. van Someren-Greve. Logarithmic least square gain decomposition algorithm for the WSRT. IWOS software documentation, ASTRON internal document, 1980.
- [2] R.A. Perley F.R. Schwab and A.H.Bridle. Synthesis imaging in radio astronomy. Astronomical Society of the Pacific Conference Series, 6, 1994.
- [3] A.B.Smolders and M.P. van Haarlem, editors. *Perspectives* on Radio Astronomy: Technologies for Large Antenna Arrays

Ghostbusted - Gerfeest 5/11/2013

ALS Calibration

$$\mathcal{R} \leftarrow \mathcal{G}, \quad \mathcal{G} = \vec{g}\vec{g}^H$$

- *R* is rank two (for two sources), *G* is rank one by construction
- ALS "deranking" builds G by taking just the largest eigenvalue/eigenvector of R
 - Not exactly the same as off-diagonal LSQ...
 - ...but we've empirically shown that this produces similar ghost patterns
 - ...and deranking can be studied analytically

Regular spacing

WSRT is regularly-spaced: there's always a "common quotient baseline" (CQB) b₀ such that for all baselines there is a whole-number scaling relationship:

 $\vec{u}_{pq} = \vec{b}_0 \phi_{pq}$

Per-baseline "calibrated sky"

- Deranking allows us to work out G analytically...
 - (...lots of math skipped, see paper...)
- <u>Key result</u>: the "calibrated sky" seen by each baseline pq is an infinite string of delta-functions of varying intensity, placed at intervals inversely proportional to ϕ_{pq} :

$$I_{pq}(l,m) = \sum_{j=-\infty}^{\infty} c_{j,pq}^{\mathcal{G}} \,\delta(l + \frac{jl_0}{\phi_{pq}}, m + \frac{jm_0}{\phi_{pq}})$$

ghost intensity coefficients (can be worked out numerically)

Putting It Together

- Each baseline "sees" its own ghost string with intervals of $\,\phi_{pq}\,$
- The combined effect is some sort of average (depends on imaging weights, etc.)
- Because of the whole-number scaling relationship, ghosts occupy a discrete set of positions (i.e. rational fractions of l_0, m_0)
 - redundancy means that some positions are "preferred"
 - Amplitude coefficients differ per baseline, hence each ghost position exhibits its own "GSF" ≠ PSF

Distilled Ghost Pattern

 This pattern is then translated into the "corrected sky" image, given by

$$\mathcal{R}_{\rm corr} = G^{-1} \mathcal{R} G^{-H} = \mathcal{G}^{\top} \odot \mathcal{R}$$

- ...because \mathcal{G}^{\top} actually has the same string-like structure (with different values for the *c* coefficients)
- The interesting thing is the "distilled" ghost pattern:

$$\mathcal{R}_{\mathrm{corr}} - \mathcal{R} = (\mathcal{G}^{ op} - \mathbf{1}) \circ \mathcal{R}$$

"atomic" ghost pattern

Predicted vs. Observed Patterns

Ghost Intensity

- Empirical observation (2010): ghost pattern scaled with intensity of secondary source A_s, but did **not** seem to depend on primary source A_p
- This can now be explained:

Dominated by A_ $_{\!\scriptscriptstyle\rho}$ $\mathcal{R}_{
m corr}-\mathcal{R}=(\mathcal{G}^{ op}-\mathbf{1})\circ\mathcal{R}$ Dominated by

 A_{s}/A_{p} flux ratio

...but the full picture is even more interesting...

Flux Suppression vs. Flux Ratio

- Ghost at 1 deg sits on top of missing source
- Ghost at 0 deg sits on top of primary source
- Responsible for what we know as flux suppression

Note the non-trivial dependence!

Flux Of Others

Ghostbusted - Gerfeest 5/11/2013

Why Is This Important?

- Affects all instruments
 - Only regularity is special to WSRT
- Ghosts will always exist (in the noise, at least), until you build up a complete sky model
 - Which is very laborious and/or compute-intensive
 - What about other calibration approaches?
- What does this do to the noise statistics?
- Shallow calibration pipelines (AARTFAAC, etc.)
 - Need to identify how deep a model is needed to keep ghosting within acceptable levels

Conclusions

- Ghosts (and WSRT regularity) explained
 - Ger can retire now
- We have a theoretical framework to predict ghost formation, which can and should be extended to other instruments

