Tomography of the ionosphere at LOFAR

Soobash Daiboo and Leon Koopmans
Kapteyn Astronomical Institute
The Earth’s ionosphere

(from S. J. Bauer, Physics of Planetary Ionospheres, 1973)
Ionospheric Corruptions
Ionospheric corruptions
Medical Computed Tomography

www.siemens.com
The LOFAR Core

CORE

Central Core
Beams overlap
Power-spectrum Tomography

\[
\delta I^{(s)}(s_u, s_v) = \frac{1}{s_w^2} \int \int I^{(i)}(s_{0,u}, s_{0,v}) |\tilde{\Phi}(s - s_0)|^2 ds_{0,u} ds_{0,v}
\]

\[s_w^2 = 1 - s_u^2 + s_v^2\]

Directional Cosines

Geometric Term due to Curve Sky and Planar Array

Rescaled Intensity

\[
\delta J^{(s)}(s_u, s_v) \equiv s_w^2 \cdot \delta I^{(s)}(s_u, s_v)
\]

Koopmans 2010
Estimating the dTEC

Fitting Tec to Sagecal Solutions

Fit for frequency dependence of the phase due to the ionosphere

115 - 189 MHz
0.2 MHz Bandwidth Channel
379 subbands
Box splines Tomography

Ray-trace and estimate all the weights at the voxels

\[d = fs + n \]

d is data points
s is the model parameters, in this case the electron density at each pixel.
f is a constant linear transformation matrix, in this case the weights at each voxels
n is noise
Regularised Maximum Likelihood Inversion

consider f to be a constant linear transformation matrix of dimensions N_d-by-N_s such that

$$d = fs + n$$ \hspace{1cm} (1)

where n is the noise in the data characterised by the covariance matrix C_D (here and below, subscript D indicates “data”).

Modelling the noise as Gaussian, the probability of the data given the model parameters s is

$$P(d|s,f) = \frac{\exp(-E_D(d|s,f))}{Z_D}$$ \hspace{1cm} (2)

where

$$E_D(d|s,f) = \frac{1}{2} (fs - d)^T C_D^{-1} (fs - d)$$
$$= \frac{1}{2} \chi^2$$ \hspace{1cm} (3)

and $Z_D = (2\pi)^{Nd/2} (\det C_D)^{1/2}$ is the normalisation for the probability. The probability $P(d|s,f)$ is called the likelihood.

Regularisation parameter since Ed is ill-posed.

$$P(s|g,\lambda) = \frac{\exp(-\lambda E_S(s|g))}{Z_S(\lambda)}$$ \hspace{1cm} (4)

Bayes’ rule tells us that the posterior probability of the parameters s given the data, response function and prior is

$$P(s|d,\lambda, f, g) = \frac{P(d|s,f)P(s|g,\lambda)}{P(d|\lambda, f, g)}$$ \hspace{1cm} (5)

Suyu et al. 2006
Building a 3D model

Optimise Bayesian evidence based on:

- Regularisation parameter
- Grid Size
- Height of the ionosphere layers

2D model
Height of the ionosphere

Changing of the height of the ionosphere in a 2D model leads to rearranging of the pierce points. This could lead to conflicting constraints on the model. If this persists then the ionosphere is 3D.
Building a 3D model

![Graph showing time in hours UTC vs. dTEC with RECONSTRUCTION: BLUE - measured, RED - 2D, Green - 3D.](image-url)
Tomography
To be done

- Multiple grids for the 3D model to take into account the different station density of the LOFAR core and remote stations.

- Prediction for ionospheric correction for arbitrary directions in the field of view.

- Application of ionospheric correction to the uv data.
Thank you