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m We investigate multichannel spatial filtering techniques for removing continu-

ally present interference such as TV signals, radio broadcasts, or the GPS satel-

lite system.

m The techniques are based on subspace projections on short-term spatial co-

variance matrices.

m Tested on (1) WSRT/focal plane array (3C48 contaminated by Afristar)
(2) RS409 LOFAR station (TV station interference)
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m The outputs of the reference array are processed as additional telescopes

m Correlation and short-time integration (e.g. 10 ms), followed by offline filtering
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Data model

m Interference free case: the received data vector on primary array (po elements)
IS
Xo(t) = vo(t) + no(t)

where vq is the astronomical signal, ng the noise.

m With interference s(t), we receive
Xo(t) = vo(t) +ap(t)s(t) + no(t)
m With a reference antenna (p; elements):
x1(t) = a1(t)s(t) + ny(t)

xo(t)

m Stacking all antenna signals in a single vector x(t) = {
Xl(t)

] ., we obtain

x(t) = v(t) + a(t)s(t) + n(t)
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Covariance model

From the observed data, construct short-term covariance estimates

, (kDM
= H
Ry = Y Z XnX,
n=kM
with expected value
H H
R, . Roo.x  Ro1k Ryo+agkag, + Lo ‘ a0, kA7
k = —
H H
Rioxk Riix a1 kag 4 ‘ aikay , + X

where R, o are the visibilities on the primary array, ¥ is the noise at the primary

array, 1 is the noise at the reference array.

Objective: estimate interference-free visibilities, Voo := R, o + X¢.

We assume R, o < X, and a, stationary over short processing times (~ 10 ms).

We also assumed no astronomical signal on the reference antennas.
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First technique: subtraction (cf. Briggs e.a., Jeffs e.a.)

With a single reference antenna without noise, the expected value is

H
Rvo+aokag, + Lo ‘ ao kO

Ry =

H 2
aO,ka ‘ a

Thus, form the ‘clean’ instantaneous estimates
. . . AP
W0,k = Roo.k — Ro1.kRi7 (Riok ~ Ryo+Xo

and average them to obtain an estimate of V.

Disadvantage:

m Not general: assumes no noise on reference; can cancel at most p; interferers.

With noise, subtraction introduces a bias

m Bias can be avoided, but for poor INR of the reference antenna, subtraction can

become unstable
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Second technique: spatial filtering with projections

m Estimate a, from eigenvalue or Factor Analysis computations, and form a projec-
tion matrix:

P, =1- ak(aﬂak)_laﬁ Note: Pray, =0

m Apply the projection: Q, := P, R.P.
Ideally, the interferer is gone and Qy is equal to P, W P, where ¥ is the interference-

free data covariance.

m Average the results:

1 < 1
QZZN;PkRkPk = N;Pkwkpk

The astronomical data is modified by the projections as well.
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Second technique: spatial filtering with projections

mLetC, = P, @ Py, then

vec(Q) ~ <%

\

Ck> vec(V)

7

N < EMZ

m Apply correction: W := unvec( C'vec(Q) ).

W, is the py x po submatrix corresponding to the primary array.

Disadvantage:

m C can be ill-conditioned, e.qg., for a stationary interferer (a, constant), or interfer-

ence entering only on a single telescope.

m C is quite large (p? x p?)
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Third algorithm: spatial filter with reduced-size correction

m Previously, we solved

W = argmin || vec(Q) — Cvec(¥) ||?
|}

and then reduced V' to size py x py to obtain the estimate W .

m Instead, we can use the known structure of ¥ and solve

Voo | 0
E

)II°

00

Woo = argmin |vec(Q) — Cvec( {

m This is a standard Least Squares problem after separating the knowns from the

unknowns:

vec(Wog) = argmin || vec(Q) — [C; Cy] {

00

VeC(Woo)] I?

01

= Cl(vec(Q) — Cz01)
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Third algorithm: spatial filter with reduced-size correction

Advantages:

m Can still work for stationary interferers (a, constant): C; is tall and expected to

have full column rank

m Same advantage in case only one of the primary antennas is contaminated (ay g
has only one nonzero entry).
Without reference antenna, the projection is always the same and cannot be

corrected.

m Unlike the subtraction technique, can project more interferers than number of

reference antennas (subject to a non-stationary ay).
m With Factor Analysis, can work on uncalibrated arrays.
Disvantage:

m C; is still a quite large matrix to invert.
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Fourth algorithm: Extended Factor Analysis

Factor Analysis is a numerical technique that generalizes the Eigenvalue Decom-

position: given R with model

R=AA" ¥
(low rank plus diagonal), find estimates for A (low-rank factor) and ¥ (diagonal).
We extended this to low-rank plus block-diagonal, or even more general, here
Voo | 0

R=AA"+
0 | %

where W is a full matrix and X4 is a diagonal. The EFA algorithm gives directly
A and W, (no calibration needed). The estimate for Wyq is the RFI-free visibility

estimate. Compute the decomposition for every Ry, then average.

Properties:

m No projections, no prior calibration needed
m No assumptions on stationarity of interferers

m Need more reference antennas than interferers
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Simulations

Scenario

m pp = 5 primary antennas (telescopes) and p; = 2 reference antennas

m Source: SNRy = —20 dB with respect to each primary array element, and SNR; =

—40 dB towards the reference antenna.

m Interferer: various INRs towards the primary and reference array (INRg and INRdIff =

INR; — INRyp), varying a, for each data block.
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Simulations

Algorithms

m First method: "subtraction"; no rank detection

m Second method: spatial filtering ("eig ref"); rank detection

m Third method: improved spatial filtering ("eig ref red" and "fa ref"); rank detection
m Fourth method: extended factor analysis ("EFA"); rank detection

m For comparison, spatial filtering without reference antenna ("eig-no-ref"), interference-

free ("RFI free"), no filtering ("no-filter")

Shown is the relative Mean Squared Error of the estimated filtered covariance com-

pared to the theoretical value Voo = R, o + X, normalized by W .
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Simulations

Very short long-term integration (=2)

Relative Error
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(a) relative MSE as function of interferer power at the reference antenna,

(b) relative MSE as function of the interferer power difference

m Flat MSE for varying INRs (desirable)

m "Eig ref red", "fa ref* and "EFA" are best (similar performance)
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Experiment: Afristar

m WSRT is the primary array (pp = 3 telescopes used).

m Reference antenna array is focal plane array on one telescope pointed to zenith

(p1 = 27 elements used).
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Experiment: Afristar

Spectrum of Primary Antenna (Uncalibrated) Spectrum of Reference Antennas
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Observed spectrum from (a) the primary telescopes (b) 6 of the reference antennas

Telescopes are uncalibrated
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Experiment: Afristar
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(a) Spectrum of primary antenna after whitening (calibrated using Factor Analysis),

(b) Average normalized Correlation Coefficients
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Experiment: Afristar

Correlation Coef After Filtering with Projections 0 Correlation Coef after FA
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Averaged Normalized Correlation Coefficients

(a) after improved spatial filtering using Factor Analysis, (b) after using EFA.
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Experiment: LOFAR RS409

RS409 is a LOFAR station close to TV transmitters. In particular it receives inter-

ference from DVB-T.

Experiment

m all HBA tiles are tracking Cygnus A. pg = 40 tiles are "primary", and p; = 6 tiles

are "reference".

m Data in HBA mode 5 (110-190 MHz); sampling at 200 MHz, direct dump of 100

sec of time-domain data from TBB boards.

m Preprocessing: splitinto 1024 frequency channels, short-time avaraging to 19 ms

(available: 4 long-term covariance estimates)
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Experiment: LOFAR RS409

Spectrum LOFAR HBA Mode 5
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Autocorrelation spectrum
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Experiment: LOFAR RS409

Factor Analysis + Spatial Filtering LOFAR ST. RS409 HBA Mode 5
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Filtered spectrum: (solid): unfiltered; (dashed) improved spatial filter with Factor

Analysis

Performance of filtering somewhat limited due to violated assumption: reference

antennas were also pointed at astronomical signal.
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Experiment: LOFAR RS409

Clean Subband 250 Dirty Subband 247

(a) Clean (at 175.59 MHz) (b) Contaminated (at 175.88 MHz)
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Experiment: LOFAR RS409

Dirty Subband 247 after Filtering FA+SP Dirty Subband 247 after Filtering Extended FA
-0.4

(a) Improved spatial filter with Factor Analysis (b) Extended Factor Analysis

1
22 TUDelft



Conclusions

m Reference antennas give powerful additional information

m Factor Analysis and Extended Factor Analysis appear to be robust over a range

of INRs and INR differences

m For LOFAR, need extensions to work on interference cancellation at station level

(adaptive beamforming) whereas covariance data is needed at instrument level

Thanks to Albert-Jan Boonstra, Stefan Wijnholds, Menno Norden (ASTRON) for sugges-

tions and providing experimental data.
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