Ger's Universe, Groningen, 4-6 November 2013

SPATIAL FILTERING OF RFI USING A REFERENCE ANTENNA ARRAY

Alle-Jan van der Veen and Millad Sardarabadi Delft University of Technology, Delft, The Netherlands

- We investigate multichannel spatial filtering techniques for removing continually present interference such as TV signals, radio broadcasts, or the GPS satellite system.
- The techniques are based on subspace projections on short-term spatial covariance matrices.
- Tested on (1) WSRT/focal plane array (3C48 contaminated by Afristar)
 (2) RS409 LOFAR station (TV station interference)

Setup

The outputs of the reference array are processed as additional telescopes

Correlation and short-time integration (e.g. 10 ms), followed by offline filtering

Data model

Interference free case: the received data vector on primary array (p₀ elements) is

$$\mathbf{\tilde{x}}_0(t) = \mathbf{v}_0(t) + \mathbf{n}_0(t)$$

where \mathbf{v}_0 is the astronomical signal, \mathbf{n}_0 the noise.

• With interference s(t), we receive

 $\mathbf{x}_0(t) = \mathbf{v}_0(t) + \mathbf{a}_0(t)s(t) + \mathbf{n}_0(t)$

With a reference antenna (*p*₁ elements):

$$\mathbf{x}_1(t) = \mathbf{a}_1(t)s(t) + \mathbf{n}_1(t)$$

Stacking all antenna signals in a single vector $\mathbf{x}(t) = \begin{bmatrix} \mathbf{x}_0(t) \\ \mathbf{x}_1(t) \end{bmatrix}$, we obtain

$$\mathbf{x}(t) = \mathbf{v}(t) + \mathbf{a}(t)s(t) + \mathbf{n}(t)$$

Covariance model

From the observed data, construct short-term covariance estimates

$$\mathbf{\hat{R}}_{k} = \frac{1}{M} \sum_{n=kM}^{(k+1)M} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{H}}$$

with expected value

$$\mathbf{R}_{k} := \begin{bmatrix} \mathbf{R}_{00,k} & \mathbf{R}_{01,k} \\ \mathbf{R}_{10,k} & \mathbf{R}_{11,k} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{v,0} + \mathbf{a}_{0,k} \mathbf{a}_{0,k}^{\mathsf{H}} + \mathbf{\Sigma}_{0} & \mathbf{a}_{0,k} \mathbf{a}_{1,k}^{\mathsf{H}} \\ \mathbf{a}_{1,k} \mathbf{a}_{0,k}^{\mathsf{H}} & \mathbf{a}_{1,k} \mathbf{a}_{1,k}^{\mathsf{H}} + \mathbf{\Sigma}_{1} \end{bmatrix}$$

where $\mathbf{R}_{\nu,0}$ are the visibilities on the primary array, $\mathbf{\Sigma}_0$ is the noise at the primary array, $\mathbf{\Sigma}_1$ is the noise at the reference array.

Objective: estimate interference-free visibilities, $\Psi_{00} := \mathbf{R}_{v,0} + \boldsymbol{\Sigma}_0$.

We assume $\mathbf{R}_{v,0} \ll \mathbf{\Sigma}_0$, and \mathbf{a}_k stationary over short processing times (~ 10 ms). We also assumed no astronomical signal on the reference antennas.

First technique: subtraction (cf. Briggs e.a., Jeffs e.a.)

With a single reference antenna without noise, the expected value is

$$\mathbf{R}_{k} = \begin{bmatrix} \mathbf{R}_{v,0} + \mathbf{a}_{0,k}\mathbf{a}_{0,k}^{\mathsf{H}} + \mathbf{\Sigma}_{0} & \mathbf{a}_{0,k}\bar{\alpha} \\ \hline \mathbf{a}_{0,k}^{\mathsf{H}}\alpha & \alpha^{2} \end{bmatrix}$$

Thus, form the 'clean' instantaneous estimates

$$\hat{\Psi}_{00,k} = \hat{\mathbf{R}}_{00,k} - \hat{\mathbf{R}}_{01,k} \hat{\mathbf{R}}_{11,k}^{-1} \hat{\mathbf{R}}_{10,k} \quad \sim \quad \mathbf{R}_{\nu,0} + \mathbf{\Sigma}_{0}$$

and average them to obtain an estimate of Ψ_{00} .

Disadvantage:

- Not general: assumes no noise on reference; can cancel at most p₁ interferers.
 With noise, subtraction introduces a bias
- Bias can be avoided, but for poor INR of the reference antenna, subtraction can become unstable

Second technique: spatial filtering with projections

Estimate a_k from eigenvalue or Factor Analysis computations, and form a projection matrix:

$$\mathbf{P}_k := \mathbf{I} - \mathbf{a}_k (\mathbf{a}_k^{\mathsf{H}} \mathbf{a}_k)^{-1} \mathbf{a}_k^{\mathsf{H}}$$
 Note: $\mathbf{P}_k \mathbf{a}_k = 0$

• Apply the projection: $\hat{\mathbf{Q}}_k := \mathbf{P}_k \hat{\mathbf{R}}_k \mathbf{P}_k$.

Ideally, the interferer is gone and $\hat{\mathbf{Q}}_k$ is equal to $\mathbf{P}_k \hat{\Psi}_k \mathbf{P}_k$ where $\hat{\Psi}_k$ is the interference-free data covariance.

Average the results:

$$\hat{\mathbf{Q}} := \frac{1}{N} \sum_{k=1}^{N} \mathbf{P}_k \hat{\mathbf{R}}_k \mathbf{P}_k = \frac{1}{N} \sum_{k=1}^{N} \mathbf{P}_k \hat{\mathbf{\Psi}}_k \mathbf{P}_k$$

The astronomical data is modified by the projections as well.

Second technique: spatial filtering with projections

• Let $\mathbf{C}_k = \mathbf{P}_k^{\mathsf{T}} \otimes \mathbf{P}_k$, then

$$\operatorname{vec}(\hat{\mathbf{Q}}) \sim \underbrace{\left(\frac{1}{N}\sum_{k=1}^{N}\mathbf{C}_{k}\right)}_{C}\operatorname{vec}(\mathbf{\Psi})$$

Apply correction: $\hat{\Psi} := \text{unvec}(\mathbb{C}^{-1}\text{vec}(\hat{\mathbb{Q}})).$

 $\hat{\Psi}_{00}$ is the $p_0 \times p_0$ submatrix corresponding to the primary array.

Disadvantage:

- **C** can be ill-conditioned, e.g., for a stationary interferer (\mathbf{a}_k constant), or interference entering only on a single telescope.
- **C** is quite large $(p^2 \times p^2)$

Third algorithm: spatial filter with reduced-size correction

Previously, we solved

$$\hat{\boldsymbol{\Psi}} = \underset{\boldsymbol{\Psi}}{\operatorname{arg\,min}} \parallel \operatorname{vec}(\hat{\boldsymbol{Q}}) - \boldsymbol{\mathsf{C}}\operatorname{vec}(\boldsymbol{\Psi}) \parallel^2$$

and then reduced $\hat{\Psi}$ to size $p_0 \times p_0$ to obtain the estimate $\hat{\Psi}_{00}$.

Instead, we can use the known structure of Ψ and solve

$$\hat{\Psi}_{00} = \underset{\Psi_{00}}{\operatorname{arg\,min}} \|\operatorname{vec}(\hat{\mathbf{Q}}) - \mathbf{C}\operatorname{vec}\left(\begin{bmatrix} \Psi_{00} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{\Sigma}_1 \end{bmatrix}\right)\|^2$$

This is a standard Least Squares problem after separating the knowns from the unknowns:

$$\operatorname{vec}(\hat{\Psi}_{00}) = \operatorname{arg\,min}_{\Psi_{00}} \|\operatorname{vec}(\hat{\mathbf{Q}}) - [\mathbf{C}_{1} \ \mathbf{C}_{2}] \begin{bmatrix} \operatorname{vec}(\Psi_{00}) \\ \sigma_{1} \end{bmatrix} \|^{2}$$
$$= \mathbf{C}_{1}^{\dagger}(\operatorname{vec}(\hat{\mathbf{Q}}) - \mathbf{C}_{2}\sigma_{1})$$

Advantages:

- Can still work for stationary interferers (a_k constant): C₁ is tall and expected to have full column rank
- Same advantage in case only one of the primary antennas is contaminated ($\mathbf{a}_{k,0}$) has only one nonzero entry).
 - Without reference antenna, the projection is always the same and cannot be corrected.
- Unlike the subtraction technique, can project more interferers than number of reference antennas (subject to a non-stationary a_k).
- With Factor Analysis, can work on uncalibrated arrays.

Disvantage:

C₁ is still a quite large matrix to invert.

Fourth algorithm: Extended Factor Analysis

Factor Analysis is a numerical technique that generalizes the Eigenvalue Decomposition: given $\hat{\mathbf{R}}$ with model

 $\mathbf{R} = \mathbf{A}\mathbf{A}^H + \mathbf{\Sigma}$

(low rank plus diagonal), find estimates for A (low-rank factor) and Σ (diagonal).

We extended this to low-rank plus block-diagonal, or even more general, here

$$\mathbf{R} = \mathbf{A}\mathbf{A}^{H} + \begin{bmatrix} \mathbf{\Psi}_{00} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{\Sigma}_{1} \end{bmatrix}$$

where Ψ_{00} is a full matrix and Σ_1 is a diagonal. The EFA algorithm gives directly **A** and Ψ_{00} (no calibration needed). The estimate for Ψ_{00} is the RFI-free visibility estimate. Compute the decomposition for every $\hat{\mathbf{R}}_k$, then average.

Properties:

- No projections, no prior calibration needed
- No assumptions on stationarity of interferers
- Need more reference antennas than interferers

Scenario

- **•** $p_0 = 5$ primary antennas (telescopes) and $p_1 = 2$ reference antennas
- Source: $SNR_0 = -20 \text{ dB}$ with respect to each primary array element, and $SNR_1 = -40 \text{ dB}$ towards the reference antenna.
- Interferer: various INRs towards the primary and reference array (INR₀ and INRdiff = INR₁ INR₀), varying \mathbf{a}_k for each data block.

Simulations

Algorithms

- **First method:** "subtraction"; no rank detection
- **Second method:** spatial filtering ("eig ref"); rank detection
- **Third method:** improved spatial filtering ("eig ref red" and "fa ref"); rank detection
- **Fourth method:** extended factor analysis ("EFA"); rank detection
- For comparison, spatial filtering without reference antenna ("eig-no-ref"), interferencefree ("RFI free"), no filtering ("no-filter")

Shown is the relative Mean Squared Error of the estimated filtered covariance compared to the theoretical value $\Psi_{00} = \mathbf{R}_{v,0} + \boldsymbol{\Sigma}_0$, normalized by Ψ_{00} .

Simulations

Very short long-term integration (=2)

(a) relative MSE as function of interferer power at the reference antenna,

(b) relative MSE as function of the interferer power difference

Flat MSE for varying INRs (desirable)

"Eig ref red", "fa ref" and "EFA" are best (similar performance)

- WSRT is the primary array ($p_0 = 3$ telescopes used).
- Reference antenna array is focal plane array on one telescope pointed to zenith
- $(p_1 = 27 \text{ elements used}).$

Observed spectrum from (a) the primary telescopes (b) 6 of the reference antennas Telescopes are uncalibrated

- (a) Spectrum of primary antenna after whitening (calibrated using Factor Analysis),
- (b) Average normalized Correlation Coefficients

Averaged Normalized Correlation Coefficients

(a) after improved spatial filtering using Factor Analysis, (b) after using EFA.

RS409 is a LOFAR station close to TV transmitters. In particular it receives interference from DVB-T.

Experiment

- all HBA tiles are tracking Cygnus A. $p_0 = 40$ tiles are "primary", and $p_1 = 6$ tiles are "reference".
- Data in HBA mode 5 (110-190 MHz); sampling at 200 MHz, direct dump of 100 sec of time-domain data from TBB boards.
- Preprocessing: split into 1024 frequency channels, short-time avaraging to 19 ms (available: 4 long-term covariance estimates)

Autocorrelation spectrum

Filtered spectrum: (solid): unfiltered; (dashed) improved spatial filter with Factor Analysis

Performance of filtering somewhat limited due to violated assumption: reference antennas were also pointed at astronomical signal.

(a) Clean (at 175.59 MHz) (b) Contaminated (at 175.88 MHz)

(a) Improved spatial filter with Factor Analysis (b) Extended Factor Analysis

- Reference antennas give powerful additional information
- Factor Analysis and Extended Factor Analysis appear to be robust over a range of INRs and INR differences
- For LOFAR, need extensions to work on interference cancellation at station level (adaptive beamforming) whereas covariance data is needed at instrument level

Thanks to Albert-Jan Boonstra, Stefan Wijnholds, Menno Norden (ASTRON) for suggestions and providing experimental data.