Sgr A* eats G2 implications for scintillations

Mark Walker (Manly Astrophysics)

Comet C/2012 S1 (ISON)

Adam Block/Mount Lemmon SkyCenter/University of Arizona

Gillessen et al 2012

S2

G2 2011.3 G2 2008.3 G2 2004.5

40 mpc

What might happen to G2...

٠

Manly Astrophysics

Tuesday, 5 November 2013

M.Schartmann/MPE/ESO

The orbit of G2

Gillessen et al 2012

Manly Astrophysics

Simplest interpretation of G2

Origin, as for comets

- Oort cloud" of long-lived parent bodies
- Parents must be self-gravitating & stable
- Parents must not be too dense
 - UV radiation too weak to inflate a planet
 - Low temperature gas cloud
- \odot Molecular clouds of mass ~ 10⁻⁵ M $_{\odot}$

Sgr A* is now our local AGN

- G2 is a single cloud moving at high speed
- Just add more clouds to get a quasar:
 - High continuum luminosity from accretion
 - Smooth, broad emission lines
- X-ray absorption events seen from individual BLR clouds (NGC1365: Maiolino et al 2010)

Manly Astrophysics

Sgr A* is now our local AGN

- G2 is a single cloud moving at high speed
- Just add more clouds to get a quasar:
 - High continuum luminosity from accretion
 - Smooth, broad emission lines
- X-ray absorption events seen from individual BLR clouds (NGC1365: Maiolino et al 2010)
- Can identify the NLR with the "Oort Cloud"
- Did nobody think of modelling BLR clouds as a new population of self-gravitating objects?

Modelling small molecular clouds (with Mark Wardle)
1. Composition: 75% H₂, 25% He
2. Hydrostatic equilibrium
3. Low radiative efficiency → Adiabatic convection Equation-of-state for ideal gas:

 $P \propto Q^{5/3}$ $Q \propto T^{3/2}$ $P \propto T^{5/2}$

Manly Astrophysics

Solid-gas phase equilibrium for H_{a}

Example solution $(M = 10^{-5} M_{\odot})$

Example solution (M = $10^{-5} M_{\odot}$)

Solutions with minimal snowflake content

The Helix Nebula

The Helix Nebula (detail)

Tiny clouds are not unique to the Galactic Centre

Supersonic motion through the diffuse ISM (with Artem Tuntsov)

Dense ionised gas: strong radio lens → Fiedler Events

Manly Astrophysics

Supersonic motion through the diffuse ISM (with Artem Tuntsov)

Supersonic motion through the diffuse ISM (with Artem Tuntsov)

Strong, ordered B-field stretched out behind cloud

 \odot Expect ionised gas and H_2 dust in magnetotail

 \bigcirc Charged H₂ dust has a metallic skin

Source Both gas and H_2 dust can scatter radio-waves

Solution Difficult to explain J1819 and pulsar parabolic arcs (Dan Stinebring's talk, tomorrow) with H_2 dust:

Expect weak frequency dependence of scattering, but strong dependence observed

Expect high optical extinction if enough dust to cause radio scintillation

Summary

- G2 is the prototype BLR cloud
- Perturbed into current orbit from Galactic "NLR"
 - The NLR is an "Oort Cloud" of small, cold, self-gravitating molecular gas clouds
- Modelling shows such clouds are robust
- Solution $f H_2$ is structurally important
- Supersonic clouds shock-heat the diffuse ISM
 - Radio lenses & anisotropic scattering result
- Snow-cloud magnetotails may offer a natural explanation for the scintillations of J1819