Deep widefield interferometry of the NCP

Sarod Yatawatta

ASTRON

Deep widefield interferometry

LOFAR challenges:

- \Box Variable beam, ionosphere \Rightarrow errors that vary across the sky.
- \Box Wide beams \Rightarrow thousands of sources.
- □ Many complex/extended sources.
- \Box Calibration down to noise \Rightarrow good sky model, covering the full sky.
- \Box Sky model construction \Rightarrow imaging a large field of view, with good enough resolution.
- \Box Need to make billion pixel images (ExCon) \Rightarrow computational problems and aliasing problems need to be addressed.
- □ Widefield calibration is affordable (SAGECal). But need to minimize noise bias and flux loss.

Leading the way...

New challenges require new ways of looking at data don't do this at home!

LOFAR NCP window

Core baselines < 3 km, 130 MHz, 62×62 sq. deg. image

Extended sources

Some complex sources in the NCP FOV, (top left) 3C61.1

Before SAGECal

Stokes I (left) Stokes Q (right) showing sidelobes from CasA and CygA

After SAGECal

Stokes I (left) Stokes Q (right), after subtraction of 11,000 sources. Is this good enough?

NCP window (after calibration)

40×40 sq. deg. image, $30 - 1000\lambda$ uniform weights, 3' PSF, 60 μ Jy

NCP window (after calibration)

Confusion limited main lobe, peak values in [-14, 30] mJy

NCP window (after calibration)

Confusion limited main lobe

Residual continuum images

Deep image of NCP

 1×1.5 sq. deg. area, 6" PSF (left) 170 hrs 35μ Jy (right) 114 hrs 50μ Jy

Deep image of NCP

(left) 170 hrs $35~\mu{\rm Jy}$ (right) 114 hrs $40~\mu{\rm Jy}$, peak 5 Jy, dynamic range >100,000

Robust calibration

 \Box Upper bound for flux loss $\sqrt{1-2\frac{\#directions}{\#baselines_{orthogonal} \times \#samples}}$.

 \Box Noise suppression reaches upper bound.

Robust calibration [Kazemi & Yatawatta, 2013] does better, in preserving flux and minimizing artefacts.

Conclusions

- LOFAR EoR NCP data have produced the deepest images at 115-180 MHz.
- Only 110 hours processed so far, more to come. No unforeseen problems.
- □ More results from this data: from Saleem, Ajinkya, Abhik, Ger...tomorrow.