

Amidou Sorgho[†]

Prof. C. Carignan[†], *Dr.* K. M. Hess^{†‡}, *Prof.* J. van Gorkom^{*}, *Prof.* T. Oosterloo[‡], *Prof.* T. Jarrett[†]

[†]Astronomy Department, University of Cape Town *Astronomy & Astrophysics Department, Columbia University [‡]Kapteyn Astronomical Institute, University of Groningen

September 4th, 2015

Background & Motivation	Observations	Results	Discussion	Summary
Outline				

The evolutionary path of a galaxy is influenced by its environment (e.g. Dressler+ '80)

When a galaxy falls into a cluster:

- infall usually happens along filament
- mechanism(s) of gas stripping in play

In Virgo:

- several HI-tail galaxies observed
- Is curious case of NGC 4424: complex morphology

Background & Motivation	Observations	Results	Discussion	Summary
NGC 4424: complex	x galaxy in Vi	rao		

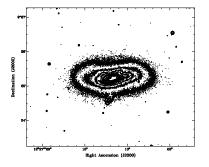
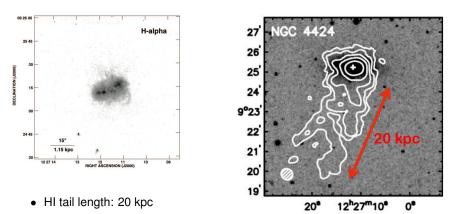


Figure: NGC 4424 in SDSS R-band contours.


- SBa galaxy (de Vaucouleurs)
- 3.1° away from from M87
- Banana-shaped isophotes
- Heavily disturbed stellar disk -(Cortés+ '06)
- Small companion to the south

Results

Discussion

Summary

Previous HI observation (Chung et al. '07, VLA)

- Truncated disk: ram pressure happening?
- Complex Hα morphology: galaxy-galaxy interaction? (Kenney+ '96, Cortés+ '06)

Background & Motivation	Observations	Results	Discussion	Summary
In this work				

Challenge

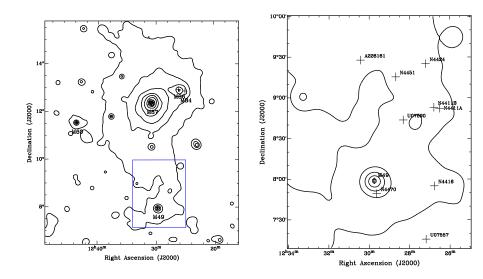
- Reference Achieve higher sensitivity (lower N_{HI}) and acceptable resolution
- Solution Observe HI tail at an unprecedented extent
- Investigate causes of HI tail

Tools

- **KAT-7: short baselines** \longrightarrow extended structures + high N_{HI} sensitivity
- WSRT: higher resolution

Background & Motivation	Observations	Results	Discussion	Summary
In this work				

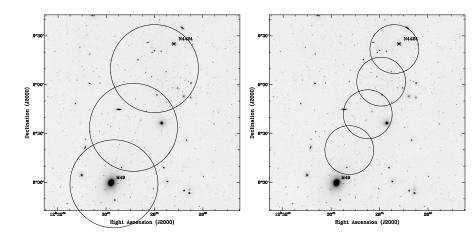
Challenge


- Reference Achieve higher sensitivity (lower N_{HI}) and acceptable resolution
- Solution Observe HI tail at an unprecedented extent
- Investigate causes of HI tail

Tools

- **KAT-7:** short baselines \longrightarrow extended structures + high N_{HI} sensitivity
- WSRT: higher resolution

Background & Motivation	Observations	Results	Discussion	Summary
Observed field				



Results

Discussio

Summary

Pointings

Background & Motivation	Observations	Results	Discussion	Summary

Summary of observations

Parameter	KAT-7	WSRT
Central frequency	1418.0 MHz	1415.6 MHz
Number of pointings	3	4
Total integration/pointing	30h & 24h & 24h	12h
Velocity range	$\sim \text{-}2115 - 3179\text{km}\text{s}^{-1}$	$\sim \text{-1030} - 2800\text{km}\text{s}^{-1}$
Total bandwidth	25 MHz	20 MHz
Number of channels	4096	1024
Channel bandwidth	6.1 kHz - 1.28 $\mathrm{km}\mathrm{s}^{-1}$	19.5 kHz - 4.13 $\rm kms^{-1}$
Synthesized beam	$\sim 4'$	$\sim 3' imes 0.5'$

Background & Motivation	Observations	Results	Discussion	Summary
Final cubes				

KAT-7 & WSRT cubes

$$\triangleright \quad \text{Over} \sim 15 \,\text{km s}^{-1}$$

$$\blacksquare \quad \sigma_{\text{KAT7}} \sim 2.5 \,\text{mJy beam}^{-1}$$

$$\blacksquare \quad \sigma_{\text{WSRT}} \sim 0.35 \,\text{mJy beam}^{-1}$$

$$\triangleright \quad \text{over} \sim 75 \,\text{km s}^{-1} \text{ and at } 3\sigma$$

$$\blacksquare \quad \text{KAT-7} : N_{HI} \sim 1.2 \times 10^{19} \,\text{cm}^{-2}$$

$$\blacksquare \quad \text{WSRT} : N_{HI} \sim 1.4 \times 10^{19} \,\text{cm}^{-2}$$

KAT-7 + WSRT?

Fraditional combination in u, v plane

 \triangleright New approach: combination in N_{HI}

$$l_c = \frac{1.26 \, l_K + l_W}{2.26}$$

Background & Motivation	Observations	Results	Discussion	Summary
Final cubes				

KAT-7 & WSRT cubes

$$\triangleright \quad \text{Over} \sim 15 \,\text{km s}^{-1}$$

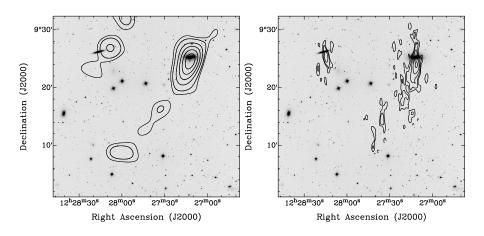
$$\implies \sigma_{\text{KAT7}} \sim 2.5 \,\text{mJy beam}^{-1}$$

$$\implies \sigma_{\text{WSRT}} \sim 0.35 \,\text{mJy beam}^{-1}$$

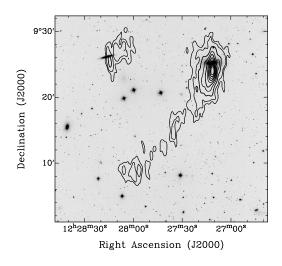
$$\triangleright \quad \text{over} \sim 75 \,\text{km s}^{-1} \text{ and at } 3\sigma$$

$$\implies \text{KAT-7} : N_{HI} \sim 1.2 \times 10^{19} \,\text{cm}^{-2}$$

$$\implies \text{WSRT} : N_{HI} \sim 1.4 \times 10^{19} \,\text{cm}^{-2}$$


KAT-7 + WSRT?

▷ Traditional combination in *u*,*v* plane


 \triangleright New approach: combination in N_{HI}

$$l_c = \frac{1.26 \, I_{\mathcal{K}} + I_{\mathcal{W}}}{2.26}$$

Background & Motivation	Observations	Results	Discussion	Summary
NGC 4424, KAT-7 8	& WSRT			

NGC 4424, KAT-7 + WSRT

- contour levels: $5 \times 10^{18} 10^{20} \, \mathrm{cm}^{-2}$
- Better sensitivity in combined map
- HI tail length: \sim 60 kpc, i.e 3x VLA detection
- Tail contains 20% of galaxy's HI mass
- A tail detected in N4445 in opposite direction

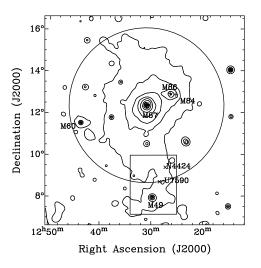
Background & Motivation	Observations	Results	Discussion	Summary
Origin of the tail				

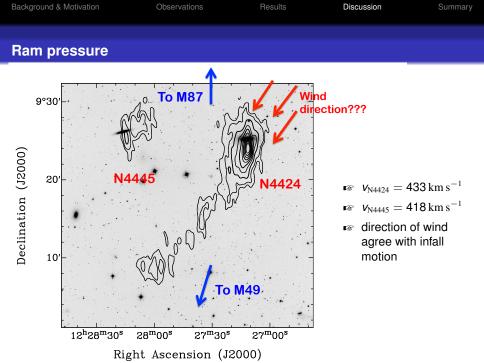
What caused the HI tail?

Two most likely processes:

- ram pressure
- galaxy-galaxy interaction

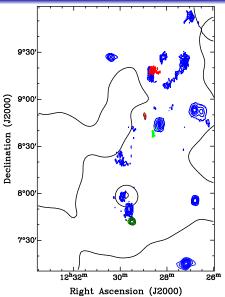
Background & Motivation	Observations	Results	Discussion	Summary
Origin of the tail				

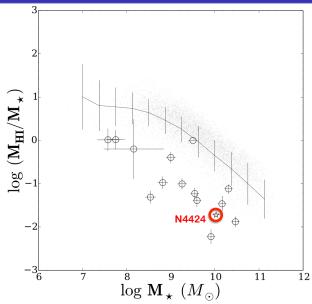

What caused the HI tail?


Two most likely processes:

- ram pressure
- galaxy-galaxy interaction

Background & Motivation	Observations	Results	Discussion	Summary
Pam proceuro				


- Very effective out to 1 – 2 r_{vir} (Kenney+ '04, Crowl+ '05, Tonnesen+ '07, Bahe+ '13)
 - $p_{ram} > f_{restoring}$ possible (Chung+ '07)


Background & Motivation	Observations	Results	Discussion	Summary
Ram pressure				

- Black contours: *ROSAT* x-ray emission
- Other colours: HI
- Most galaxies on 'filament' present asymmetry
- A few HI clouds with no optical counterparts

Results

Gas content

- Comparison of detected galaxies vs.
 ALFALFA sample (see Maddox+ '15 for description of sample)
- *M*_{*} of galaxies derived from *WISE* photometry
- ALFALFA sample represents 'upper limit'
- N4424 gas content is *typical* of environment

Short answer: YES!

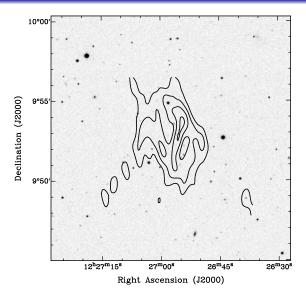
- Ram Pressure *only* cannot explain the complex $H\alpha$ morphology of NGC 4424.
- NGC 4445 could be the interacting companion. Needs further investigation.

However...

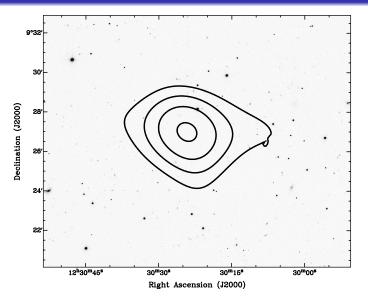
- galaxy-galaxy interaction is NOT required to explain the tail
- the hot x-ray gas distribution matches with the morphology of the tail

- Combining HI data cubes in column density units might be an alternative to combining different arrays: technique to be tested with other arrays
- The extent of NGC 4424's tail is larger than previously thought: \sim 60 kpc vs. \sim 20 kpc previously detected
- Although galaxy-galaxy interaction is not ruled out, it is most likely that the tail is caused by ram pressure stripping

Thank You!



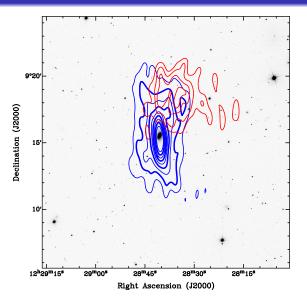
- Combining HI data cubes in column density units might be an alternative to combining different arrays: technique to be tested with other arrays
- The extent of NGC 4424's tail is larger than previously thought: \sim 60 kpc vs. \sim 20 kpc previously detected
- Although galaxy-galaxy interaction is not ruled out, it is most likely that the tail is caused by ram pressure stripping


Thank You!

Background & Motivation	Observations	Results	Discussion	Summary

VCC 0952

Cloud 7c aka AGC 226161

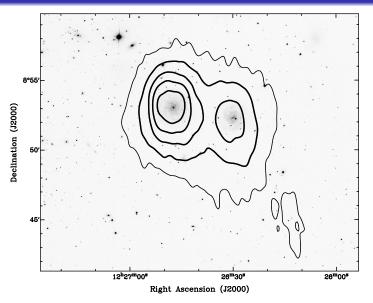


Results

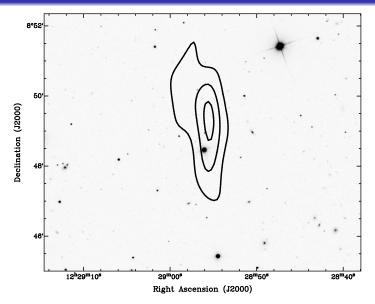
Discuss

Summary

N4451



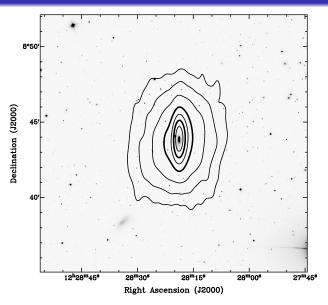
Results


Discussio

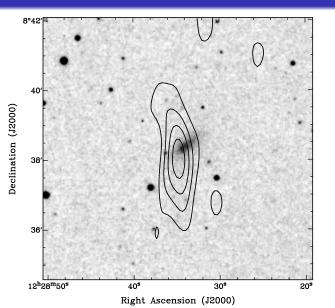
Summary

NGC 4411 A&B

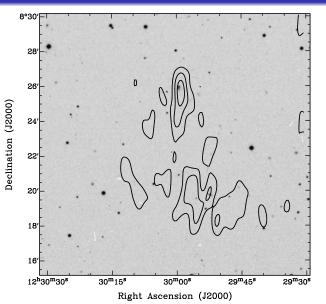
VCC 1142



Results

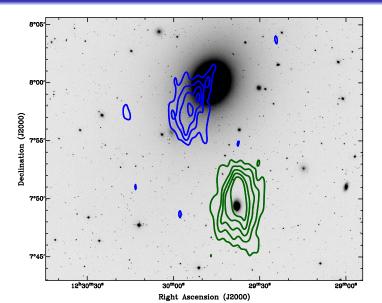

Discussio

Summary


UGC 7590

UGC 7596

AGESVC1 293

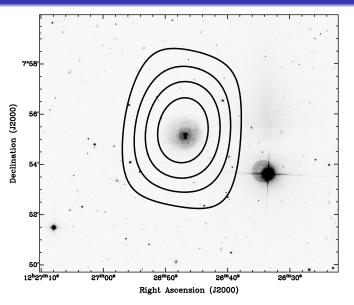


Results

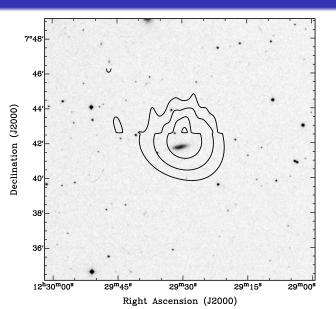
Discuss

Summary

Gas cloud near M49



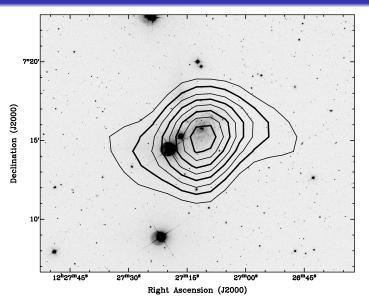
Results


Discussio

Summary

NGC 4416

NGC 4466



Results

Discussio

Summary

UGC 7557

Galaxies properties

Table 2: Properties of detected galaxies.

Object	R.A	Dec.	Туре	D_{25}	i	v _{sys}	W_{50}^{c}	$M_{\rm Hi}$	def_{HI}	$d_{\rm M87}$
J2000			(')	(deg)	$({\rm km}~{\rm s}^{-1})$	$({\rm km}~{\rm s}^{-1})$	$(10^8 M_{\odot})$		(deg)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
NGC 4424	12 27 11.6	09 25 14	SBa	3.63	62.1	433	58.6	2.0 ± 0.4	1.14 ± 0.11	3.10
NGC 4451	12 28 40.5	09 15 31	Sab	1.48	51.2	864	255.8	5.0 ± 1.8	0.59 ± 0.20	3.18
NGC 4470	12 29 37.8	07 49 27	Sa	1.29	44.7	2321	135.7	1.6 ± 0.4	0.74 ± 0.16	4.58
UGC 7590	12 28 18.8	08 43 46	Sbc	1.35	76.6	1112	177.2	32.0 ± 11.0	-0.08 ± 0.20	3.71
Cloud 7c	12 30 25.8	09 28 01	HI cloud	-	-	496	74.0	0.6 ± 0.1	-	2.93
NGC 4411A	12 26 30.0	08 52 18	Sc	2.04	54.4	1271	105.2	1.8 ± 0.3	0.84 ± 0.11	3.68
NGC 4411B	12 26 47.2	08 53 04	Sc	2.51	26.7	1260	153.9	15.6 ± 1.6	0.52 ± 0.06	3.64
UGC 7557	12 27 11.1	07 15 47	Sm	3.02	21.3	924	245.2	4.1 ± 0.7	0.75 ± 0.10	5.21
NGC 4445	12 28 15.9	09 26 10	Sab	2.63	90.0	418	171.8	0.5 ± 0.2	1.73 ± 0.18	3.02
VCC 1142	12 28 55.5	08 49 01	dE	0.27	53.4	1334	52.0	0.4 ± 0.1	-0.09 ± 0.31	3.60
NGC 4416	12 26 46.7	07 55 08	Sc	1.70	24.0	1381	229.2	3.9 ± 0.7	1.10 ± 0.12	4.58
NGC 4466	12 29 30.6	07 41 47	Sab	1.32	74.9	797	185.9	2.1 ± 0.4	0.91 ± 0.12	4.71
UGC 7596	12 28 33.9	08 38 23	Im	1.66	71.9	595	59.5	0.7 ± 0.1	1.14 ± 0.10	3.79
VCC 0952	12 26 55.7	09 52 56	SABc	0.26	54.6	1024	100.3	0.9 ± 0.2	-0.06 ± 0.44	2.68
AGESVC1 293	12 29 59.1	08 26 01	?	0.57	41.8	615	87.3	0.2 ± 0.1	-	3.96
M49 Cloud	12 29 54.4	07 57 57	HI cloud	_	-	476	66.0	0.7 ± 0.1	-	4.43
KW Cloud	12 28 34.4	09 18 33	HI cloud	-	-	1270	73.2	0.7 ± 0.1	-	3.13