X_{co} as a function of metallicity: a physically motivated three-step approach #### Cheoljong Lee (UVa) Adam Leroy (Ohio State), Scott Schnee (Aerospace), Tony Wong (Illinois) Alberto Bolatto (Maryland), Remy Indebetouw (UVa / NRAO) Monica Rubio (Chile), Andreas Schruba (MPE) Julianne Dalcanton (Washington) and the PHAT team Lee+15, MNRAS, 450, 2708 Lee+, in prep #### 1. Motivation - Astronomers use CO to trace molecular hydrogen (H₂) - 1. H₂ not directly observable in typical molecular cloud conditions - 2. CO is the second most abundant molecule after $\rm H_2$ - 3. Its rotational transitions are fairly strong and observationally accessible from the ground - X_{CO} is the conversion factor between the observed CO emission intensity (I_{CO}) and the column density of molecular hydrogen (H_2) $$X_{\rm CO} = \frac{N({\rm H_2})}{I_{\rm CO}}$$ averaged over a large part of galaxies #### 1. Motivation - Simple PDR model suggests that CO emission tracks dust shielding - H₂ less sensitive to dust shielding thanks to self-shielding - Mismatch between H₂ and CO in low metallicity systems **Bolatto+13** #### 1. Motivation - We would like to understand X_{CO} as a function of metallicity because... - Small galaxies and high redshift galaxies tend to have low metallicities and we care about e.g. - 1. Their molecular gas content and star formation - 2. The time evolution of $\Omega(H_2)$ because these galaxies are important targets for galaxy evolution Need for physical, quantitative prescription for X_{co} (Z) ### 2. Physical prescription for $X_{CO}(Z)$ ■ In Lee+15, we divide the problem into three observationally tractable parts: 1. I_{CO} is a function of A_{V} in approximately universal way i.e. CO tracks dust shileding Lombardi+06 Pineda+08 Wolfire+10 Glover+11 2. Molecular cloud has some gas column density distribution, PDF(N_H)<mark>Kainulainen+09,+14</mark> 3. A_V distribution is a product of dust-to-gas ratio and PDF(N_H) Remy-Ruyer+14 Each part is an active topic of research that can be constrained by observations and combined to provide X_{co} (Z) # 3. I_{co}-A_V in the Local Group In the Milky Way, CO tracks dust shielding nicely #### 1. I_{CO} is a function of A_V in a universal way See also Pineda+08, Pineda+10 Slide 6 of 16 ### 3. I_{co}-A_v in the Local Group Do we actually observe similar CO emission for a given dust shielding in different metallicity systems? (Lee+15) MW: 1.0 Solar metallicity LMC: 0.5 Solar metallicity SMC: 0.3 Solar metallicity Yes, in the gray area where most of the data are distributed ### 3. I_{co}-A_v in the Local Group Andromeda, in collaboration with HST and CARMA (Lee, Schruba+, in prep) Schruba+, in prep: See Andreas Schruba talk #### 4. Parsec scale I_{CO}-A_V in the Milky Way Highly resolved (sub-pc resolution) Milky Way clouds using *Planck* data : An ongoing effort to extend the work by Lombardi+06, Pineda+08, Pineda+10 #### 4. Parsec scale I_{CO}-A_V in the Milky Way An example of Taurus molecular cloud at pc resolution (extending Lombardi+06, Pineda+08, Pineda+10) #### 4. Parsec scale I_{CO}-A_V in the Milky Way - Average I_{CO}-A_V profiles of approx 20 individual clouds at pc resolution - Provides better statistics and captures spreads between clouds ### 5. Calculation of $X_{CO}(Z)$ - We take a modern view of realistic molecular cloud structure - Molecular cloud has some gas column density distribution, PDF(N_H) Lombardi+15 See also Kainulainen+09,+14 Schneider+15 Slide 12 of 16 ### 5. Calculation of $X_{CO}(Z)$ - Imagine a cloud like Taurus moved to low metallicity (and dust-to-gas) system! - 3. A_V distribution is a product of dust-to-gas ratio and PDF(N_H) $PDF(A_{V}) = DGR*PDF(N_{H})$ Assuming DGR ≈ Z #### 5. Calculation of $X_{CO}(Z)$ - Convolution of PDF(A_v) with I_{co} - A_v curve gives us PDF(I_{co}) as a function of Z - PDF(N_{H2}) can be estimated from PDF(N_H) ### 5. Calculation of $X_{co}(Z)$ X_{CO} varies nonlinearly as you change the metallicity (Lee+15) **Dust-to-gas ratio [normalized to solar]** #### 6. Summary - Physically motivated prescription for Z dependence of X_{CO} (Lee+15) - 1. We divide the problem into three separate parts that can be observationally constrained in the Local group - 2. I_{CO}-A_V relationship, Gas PDF, DGR - 3. In the Local group galaxies, I_{CO} at a given A_V similar across the environments - 4. X_{CO} goes as Z^{-1} Z^{-3} as you decrease the metallicity; Trend for super solar metallicity also interesting - 5. The utility of CO emission to trace H₂ very uncertain even at SMC like metallicity