

X_{co} as a function of metallicity:

a physically motivated three-step approach

Cheoljong Lee (UVa)

Adam Leroy (Ohio State), Scott Schnee (Aerospace), Tony Wong (Illinois) Alberto Bolatto (Maryland), Remy Indebetouw (UVa / NRAO) Monica Rubio (Chile), Andreas Schruba (MPE) Julianne Dalcanton (Washington) and the PHAT team

Lee+15, MNRAS, 450, 2708 Lee+, in prep

1. Motivation

- Astronomers use CO to trace molecular hydrogen (H₂)
 - 1. H₂ not directly observable in typical molecular cloud conditions
 - 2. CO is the second most abundant molecule after $\rm H_2$
 - 3. Its rotational transitions are fairly strong and observationally accessible from the ground
- X_{CO} is the conversion factor between the observed CO emission intensity (I_{CO}) and the column density of molecular hydrogen (H_2)

$$X_{\rm CO} = \frac{N({\rm H_2})}{I_{\rm CO}}$$

averaged over a large part of galaxies

1. Motivation

- Simple PDR model suggests that CO emission tracks dust shielding
- H₂ less sensitive to dust shielding thanks to self-shielding
- Mismatch between H₂ and CO in low metallicity systems

Bolatto+13

1. Motivation

- We would like to understand X_{CO} as a function of metallicity because...
- Small galaxies and high redshift galaxies tend to have low metallicities and we care about e.g.
 - 1. Their molecular gas content and star formation
 - 2. The time evolution of $\Omega(H_2)$

because these galaxies are important targets for galaxy evolution

Need for physical, quantitative prescription for X_{co} (Z)

2. Physical prescription for $X_{CO}(Z)$

■ In Lee+15, we divide the problem into three observationally tractable parts:

1. I_{CO} is a function of A_{V} in approximately universal way

i.e. CO tracks dust shileding

Lombardi+06
Pineda+08
Wolfire+10
Glover+11

2. Molecular cloud has some gas column density distribution, PDF(N_H)<mark>Kainulainen+09,+14</mark>

3. A_V distribution is a product of dust-to-gas ratio and PDF(N_H)

Remy-Ruyer+14

Each part is an active topic of research that can be constrained by observations and combined to provide X_{co} (Z)

3. I_{co}-A_V in the Local Group

In the Milky Way, CO tracks dust shielding nicely

1. I_{CO} is a function of A_V in a universal way

See also Pineda+08, Pineda+10
Slide 6 of 16

3. I_{co}-A_v in the Local Group

 Do we actually observe similar CO emission for a given dust shielding in different metallicity systems? (Lee+15)

MW: 1.0 Solar metallicity LMC: 0.5 Solar metallicity SMC: 0.3 Solar metallicity

Yes, in the gray area where most of the data are distributed

3. I_{co}-A_v in the Local Group

Andromeda, in collaboration with HST and CARMA (Lee, Schruba+, in prep)

Schruba+, in prep: See Andreas Schruba talk

4. Parsec scale I_{CO}-A_V in the Milky Way

Highly resolved (sub-pc resolution) Milky Way clouds using *Planck* data
 : An ongoing effort to extend the work by Lombardi+06, Pineda+08, Pineda+10

4. Parsec scale I_{CO}-A_V in the Milky Way

An example of Taurus molecular cloud at pc resolution

(extending Lombardi+06, Pineda+08, Pineda+10)

4. Parsec scale I_{CO}-A_V in the Milky Way

- Average I_{CO}-A_V profiles of approx 20 individual clouds at pc resolution
- Provides better statistics and captures spreads between clouds

5. Calculation of $X_{CO}(Z)$

- We take a modern view of realistic molecular cloud structure
- Molecular cloud has some gas column density distribution, PDF(N_H)

Lombardi+15
See also Kainulainen+09,+14
Schneider+15
Slide 12 of 16

5. Calculation of $X_{CO}(Z)$

- Imagine a cloud like Taurus moved to low metallicity (and dust-to-gas) system!
- 3. A_V distribution is a product of dust-to-gas ratio and PDF(N_H)

 $PDF(A_{V}) = DGR*PDF(N_{H})$

Assuming DGR ≈ Z

5. Calculation of $X_{CO}(Z)$

- Convolution of PDF(A_v) with I_{co} - A_v curve gives us PDF(I_{co}) as a function of Z
- PDF(N_{H2}) can be estimated from PDF(N_H)

5. Calculation of $X_{co}(Z)$

X_{CO} varies nonlinearly as you change the metallicity (Lee+15)

Dust-to-gas ratio [normalized to solar]

6. Summary

- Physically motivated prescription for Z dependence of X_{CO} (Lee+15)
- 1. We divide the problem into three separate parts that can be observationally constrained in the Local group
- 2. I_{CO}-A_V relationship, Gas PDF, DGR
- 3. In the Local group galaxies, I_{CO} at a given A_V similar across the environments
- 4. X_{CO} goes as Z^{-1} Z^{-3} as you decrease the metallicity; Trend for super solar metallicity also interesting
- 5. The utility of CO emission to trace H₂ very uncertain even at SMC like metallicity