Deciphering Local, Multiphase HI with 21-SPONGE and Artificial Intelligence

Snežana Stanimirović (UW Madison), Robert Lindner (UW Madison), W. M. Goss (NRAO), Carl Heiles (UC Berkeley), John Dickey (UTas), Brian Babler (UW Madison), Patrick Hennebelle (CEA) + the rest of the **21-SPONGE** team

What sets a galaxy's efficiency to form molecular gas?

Initial conditions for GMC formation: **atomic reservoir**

Schruba et al. 2011

What are the properties (T_s, N(HI), etc...) of the HI phases?

$$T_{b}^{on} = T_{bkg}e^{-\tau} + T_{s}\left(1 - e^{-\tau}\right)$$
$$T_{b}^{off} = T_{s}\left(1 - e^{-\tau}\right)$$

How much mass exists in each HI phase of the ISM?

CNM, WNM, and unstable fractions depend on input physics (e.g. MacLow et al. 2005, Audit & Hennebelle 2005, Hill et al. 2012)

Audit & Hennebelle 2005

Comparing observations with theory is essential, but difficult!

Needed:

- 1. Deeper, statistically significant observational constraints
- 2. Comparison strategy
- 3. Synthetic observations of simulations

Needed:

1. Deeper, statistically significant observational constraints

21-cm Spectral line Observations of Neutral Gas with the (E)VLA

- 57 sources (37 complete): S>3 Jy, lbl>10
- High-sensitivity HI absorption: $\sigma_{\tau} \sim 7 \ge 10^{-4}$
- New time-averaged bandpass calibration dramatically improves RMS and efficiency
- Filler project! 571 VLA hours / 3 years
- High detection rate: 36/37

21-cm Spectral line Observations of Neutral Gas with the (E)VLA

21-cm Spectral line Observations of Neutral Gas with the (E)VLA

21-cm Spectral line Observations of Neutral Gas with the (E)VLA

2. Comparison strategy

AUTONOMOUS GAUSSIAN DECOMPOSITION (AGD)

Lindner et al. 2015, AJ, 149, 138

AUTONOMOUS GAUSSIAN DECOMPOSITION (AGD)

- Automatic, efficient decomposition of 1D spectral data into Gaussian functions via derivative spectroscopy
- Initial guesses are chosen without human interaction

Lindner et al. 2015, AJ, 149, 138

3. Synthetic Observations

- 3D hydrodynamical Galactic ISM simulation (Kim et al., 2013, 2014)
- Includes:
 - Supernova feedback
 - Self gravity
 - ISM heating and cooling
 - 2pc spatial resolution

• 10⁴ synthetic HI spectra

Kim et al. 2014, ApJ, 786, 64

Do Gaussians Correspond to Clouds?

Matching Gaussians to Clouds in Simulations

Matching Gaussians to Clouds in Simulations

First statisticallyrobust quantification of cloud-component correspondence!

Comparing AGD Absorption Parameters

• BLUE CONTOURS:

10⁴ AGD-processed synthetic HI absorption lines (Kim et al. 2014)

Comparing AGD Absorption Parameters

• BLUE CONTOURS:

10⁴ AGD-processed synthetic HI absorption lines (Kim et al. 2014)

• BLACK: 37 AGDprocessed 21-SPONGE [©] VLA HI absorption lines (Murray et al. 2015)

Comparing CNM and WNM Absorbing LOS

Such absorption lines, with no CNM, are RARE!

How much CNM is there?

How much CNM is there?

Simulated Mass Fractions by Temperature

Simulated Mass Fractions by Temperature

Observed Mass Fractions by Temperature

Observed Mass Fractions by Temperature

Search for HI gas at even higher Ts...

Murray et al. 2014, ApJ, 781, L41

Search for HI gas at even higher Ts...

Search for HI gas at even higher Ts...

Summary

- **21-SPONGE** will constrain the uncertain mass distribution of HI as a function of T_{s} , as the largest high-sensitivity HI absorption survey:
 - Sensitive to unstable and warm gas mass
 - Evidence for $T_s \sim 7000$ K gas, weaker at high latitude
- Autonomous Gaussian Decomposition (AGD) enables fas and consistent comparisons between observations and simulations:
 - Confirms correspondence btwn HI clouds and Gaussian spectral features
 - CNM fraction agrees very well with predicted average Ts trends
 - CNM detection rate is higher in observations than simulations
- Need more HI emission/absorption observations and synthetic observations of simulations to improve statistics!