The ISM : scale and phase coupling

Edith Falgarone ENS & Observatoire de Paris

- *Planck* CO survey and polarized dust emission
- Herschel/HIFI absorption
- spectroscopy
 - ALMA high-z absorption

planck

Elements of answer to ...

- Where does the mass of the cold ISM lies?
- Is the CO-dark gas truely CO-dark?
- Where does the cold ISM energy come from?
- Does cold purely atomic hydrogen exist at all?
- What do the sharp changes of dust polarization angle tell us about B ? In the cold ISM? In the ionized gas?

Star Formation Rate and galactic environment

Influence of gas-streaming motions on SF activity

M51 CO(1-0) IRAM-PdBI survey Meid

Meidt + 2013

Stellar cluster formation in the interacting Antennae galaxies

Gravitational encounter generates compressive tides
Enhances turbulence but unbalance compressive over solenoidal modes

• Star formation enhanced

Renaud et al. 2014

Contours: ALMA CO(3-2) CFHT K band (blue) Star clusters * + H₂* VLT/Sinfoni emission

Hererra et al. 11, 12

Where does the mass of the cold ISM lies?

Planck CO all-sky survey HI Super Clouds

CO at high galactic latitude: power law distributions of size and flux of hundreds of « patches »

flux = CO brightness x (size)² ~ (size)^{1.9 to 2.5}

→ CO brightness ~ (size)^{-0.1 to 0.5}
 → Weak extended emission expected below the detection level

Planck : all-sky CO

Planck Collaboration XIII (2014) Planck Collaboration (in prep.)

CO reliable molecular gas mass tracer

Mean and standard deviation of CO emission in bins of 353 GHz emission = proxy for N_H

1 MJy sr⁻¹ @ 353 GHz \rightarrow 2 x 10²¹ cm⁻² or \approx 1 mag

¹³CO contamination at most 14%

Average X_{co} factor : $X_{\rm CO} = N({\rm H_2})/W({\rm CO})$ $X_{\rm CO} = 2 \times 10^{20} {\rm cm^{-2}}/{\rm K\,km\,s^{-1}}$ $f_{\rm H_2} = 1$

➤ CO is a reliable molecular gas mass tracer within a factor of a few over 3 orders of magnitude of column densities

see Bolatto + 2013

CO all-sky distribution

→ 90% of the cumulative flux reached at W(CO)=229 K km s⁻¹

Bulk molecular mass of the Milky Way

Non-LTE analysis: density, temperature degeneracy \rightarrow H₂ density < 600 cm⁻³ and T_k > 20K

Bulk of mass seen in CO : edges of GMCs in Inner Galaxy

Veloci

HI Super Clouds Same average density as CO GMCs $M=10^{6} - 4 \times 10^{7} M_{sol}$ 40 to 70% total HI Gravitationally bound Declining f_{H2} with R_{G} \rightarrow Fundamental units for SF

Scaling laws « at scales dominated by diffuse molecular gas »

¹²CO(1-0) galactic molecular clouds Hennebelle & Falgarone 2012 ¹²CO(3-2) Super GMCs in Antennae Interaction region (green squares) Wilson 2000 Massive diffuse halo in SDP17b at z=2.3 (blue square) Falgarone + 2015 Average HI Super cloud (cross) Elmegreen & Elmegreen 1987

Is the CO-dark gas truely CO-dark?

Or rather CO-faint?

Noise-limited threshold for CO emergence

Expected threshold: $N_{CO} = 3 \times 10^{12} \text{ cm}^{-2}$ (HST visible absorption) $\Rightarrow W(CO_{1-0}) = 3 \text{ mK km s}^{-1}$ (low density gas) at $N_{H} = 2 \times 10^{20} \text{ cm}^{-2}$ (threshold for H_{2} emergence) $\Rightarrow \tau_{353} = 2 \times 10^{-6}$

CO-dark gas in Solar Neighbourhood

 N_{H}^{tot} – dust optical depth correlation at 353 GHz Red line: best linear correlation derived at low N_{H}^{tot}

Assumption: the dust opacity per unit gas column is the same in atomic and molecular phases

Degeneracy : dust properties, HI optical depth

Planck Early Results 2011: Dark Gas: 28% of atomic component 118% of CO emitting gas

CO emission of the CO-dark gas

CO emission in 353 GHz bins dominated by CO-dark gas

Dynamic of the CO emission above noise level exceeds that of I_{353}

Large fluctuations of CO emission at low column densities → chemical fluctuations *Locally CO-overluminous gas* see Liszt & Pety 2012

Powerful non-equilibrium chemistry driven by turbulence dissipation and/or ty magnetized shocks in unshielded regions Godard + 2009, 2014

Does cold purely atomic hydrogen exist at all?

Herschel absorption spectroscopy of diffuse molecular gas

Herschel/HIFI absorption spectroscopy

HI : EVLA, Brunthaler + in prep CII : Gerin + 2015 NII : Persson + 2014 CH : Gerin + 2010a HF and H_2O : Neufeld + 2010 ArH⁺ : Schilke + 2014 OH⁺ : Gerin + 2010b CH⁺ : Falgarone + 2010, Godard + 2012

- HF : tracer of H_2 , exothermic F + H_2
- CH : tracer of H₂ (density larger than 100 cm⁻³)
- OH^{+ :} tracer of CR, destroyed by collisions with H and H₂
- CH^{+ :} tracer of energy dissipation, destroyed by collisions H and H₂
- ArH^{+ :} tracer of HI, f_{H2}<10⁻³ and CR

Herschel/HIFI absorption spectroscopy

See Gerin, Neufeld, Goicoechea, ARAA, 2016

PCA analysis Neufeld + 2015

H₂ fraction and CR ionisation rates in diffuse molecular gas

H₂ fractions are very low, down to < 10⁻³
 CR ionisation rates are much larger than upper limits provided by low temperatures in dense cores

NII and CII absorption in diffuse gas

NII emission line : HII regions in SF regions

NII absorption line from the WIM : Mean $n_e = 0.1$ to 0.3 cm⁻³ for LOS filling factor 0.5 to 0.7

CII and NII comparison: → 7 – 10 % of all C⁺ in the WIM

Turbulent dissipation in diffuse gas : CH⁺ formation

TDR models for n_{H} = 30, 50, 100 cm⁻³

 N(CH⁺) increases with UV-field
 N(CH⁺) proportional to turbulent injection rate
 Lifetime

lieume

$$t = 1 \text{yr} / f_{\text{H}_2} (n_{\text{H}} / 50 \text{ cm}^{-3})^{-1}$$

Energy formation $E_{form} = 0.5 \text{eV}$

Direct measure of the energy flux:

$$\dot{E} = \mathcal{N}(\mathrm{CH^+})E_{form}/t$$

Godard et al. 2014

Turbulent dissipation in difuse gas: CO formation

CO : visible data (absorption lines against nearby stars) Sheffer + 08, Pan + 05, Rachford + 09, Snow + 08

Post-treatment: PDR models in MHD colliding flow simulations Levrier + 2012 *Turbulent dissipation regions: model predictions for low densities Godard + 2014*

What do the sharp changes of dust polarization angle tell us about B ?

Planck all sky 353 GHz

Color scale : 353 GHz intensity Drapery : B field POS projection

Copyright ESA and the *Planck* Collaboration

Polarization angle dispersion function

p = polarization fraction

$$\Delta \psi^2(l) = \frac{1}{N} \sum_{i=1}^{N} \left[\psi\left(\mathbf{r}\right) - \psi\left(\mathbf{r} + \mathbf{l}_i\right) \right]^2$$

Planck Intermediate Results XIX 2015

No correlation of the fluctuations of polarization angle with $\rm N_{\rm H}$

Planck Intermediate Results XIX 2015

Vorticity (POS projection) + B POS

Fluctuations of polarization angle

Spectral simulations Incompressible Magnetized AD turbulence →Fundamental property of magnetized turbulence?

Momferratos + 2014, Falgarone + 2015

