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Motivation

• Understanding turbulence!

• Numerical simulations: isolate turbulence!

• Statistical properties of turbulence:  
               One-point: e.g. PDF  
               Two-point : e.g. power spectrum      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Turbulence in a box :







• continuity equation !

• Euler equation !

• isothermal !

• FLASH 4 with HLLR solver!

• homogeneous grid!

• 3D, periodic boundary conditions!

• initial conditions: 
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Forcing routine

Ornstein-Uhlenbeck process !
!
!
→ forcing field varies smoothly in space and time

(Schmidt W., et al., 2009, A&A, 494, 127)

solenoidal
∇ ◦ !a = 0

mixed compressive
∇× !a = 0
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ABSTRACT

Key words: keywords

1 SIMULATIONS AND METHODS

We refer the reader to the publication Konstandin et al.
(2015a) for a detailed description of the Bayesian method
and Konstandin et al. (2015b) for the simulation set, such
that we can describe it here just briefly.

1.1 The simulations

We solve the hydrodynamical equations on a uniform, three-
dimensional grid with periodic boundary conditions and
with 2563, 5123, and 10243 grid points, using the HLL5R
solver (Waagan et al. 2011), implemented in a modified ver-
sion of FLASH4 (Fryxell et al. 2000; Dubey et al. 2008). The
hydrodynamical equations are the continuity equation and
the Euler equation
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with a stochastic forcing term F per unit mass, the mass
density ⇢, the velocity field v, and the pressure p. We assume
an isothermal medium, which is a reasonable assumption for
modelling molecular clouds (Wolfire et al. 1995; Pavlovski
et al. 2006), such that p = ⇢cs

2 with the sound speed cs.
The implementation of the random forcing F per unit mass
is guided by this of Schmidt et al. (2006). It is derived from
a stochastic Ornstein-Uhlenbeck process
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in Fourier space (k-space) with the autocorrelation time
scale T
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, the projection tensor P
⇣

, and the parabolic
weighting function �

2(k) = k

2(2k0 � k)⇥(k � 2k0) with the
characteristic forcing wavenumber k0 and the heaviside step
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function ⇥(k). It only contains the largest scales k 6 3,
measuring k in units of 2⇡/L with L being the box size. We
fix the energy input rate of the forcing, such that we have
root mean square (rms) Mach numbers M = 1, 5, 10, 16
in the stationary state of fully developed turbulence. The
forcing method has a finite autocorrelation time T

ac

scale,
which we set to the dynamical time scale T = L/(2cSM),
and it is therefore smooth in space and time. To measure
the influence of the resolution on the results, we run simu-
lations with 2563, 5123, and 10243 grid cells at these Mach
numbers. Additionally, we perform 16 simulations at 2563

with Mach numbers ranging from M = 0.5 up to M = 15
equally spaced with �M ⇡ 1 such that we end up with 32
simulations in total. We start with gas of uniform density at
rest and let it run for & 15T with T = L/(cSM).

1.2 Autocorrelation

The correlation coe�cient c

x,y

of two random variables
x, y with expectation values µ
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(4)
where cov(x, y) is the covariance function and E() is the
expected value. The autocorrelation tensor of the turbulent
velocity field is defined as

A(t) =
h[⇢(T, r)� µ

⇢

] [⇢(T + t, r)� µ

⇢

]ir, T
�

2
⇢

, (5)

where the brackets indicate the average over all positions r.
It follows from homogeneity that the autocorrelation tensor
is independent of r and from isotropy that it can only depend
of the magnitude of ` and not its direction.
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(Konstandin L., et al. 2012)

• solenoidal forcing is more space filling, whereas compressive 
yields larger voids and stronger shocks
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One point statistic: density PDF

•                                               

(Passot T.,Vasquez-Semadeni E., 1994, Phys. Rev. E, 58, 4)
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and

�2
⇢ = exp (�2

s)� 1 . (10)

Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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Figure 4. Probability distribution function of s measured in the

simulations with 1024

3
resolution and at di↵erent Mach numbers.

The shaded areas indicate the one sigma time variations of the

PDFs. The red dotted lines correspond to a normal distribution

with only one parameter, as we expressed the mean value via

µs = ��

2
s/2.

central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and
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Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,
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[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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for the mean and
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and
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together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
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parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
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(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.
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In the next step we analyse the relation between the stan-
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and

�2
⇢ = exp (�2

s)� 1 . (10)

Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and

�2
⇢ = exp (�2

s)� 1 . (10)

Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,
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p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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di↵erent Mach numbers at once such that ↵ and � do not
depend on the Mach number and are consistent with the
measurements in Section 4.4. The additional factor k⌘ im-
proved the fit significantly such that the fit and the density
spectra are hardly distinguishable for k < 80. The fitting
parameter ⌘ describes the deviation from a pure power law,
which is nearly zero for the low Mach number simulation,
such that in this case the density power spectrum is well
described by a single power law. For the high Mach num-
ber cases the parameter ⌘ increases up to �0.04± 0.02. We
interpret the measurements of ⌘ as lower limits of the cur-
vature, as the density spectra get still steeper at small wave
numbers k ⇡ 7 with resolution, whereas their scaling ex-
ponents at intermediate scales changes only slightly with
resolution (Figure 7, or Figure A1 panel in the middle and
on the right).

Before we close this section, we want to mention that
the parametrisation of our simulations with the Mach num-
ber is arbitrary and we chose it as it is used in the derivation
of Saichev & Woyczynski (1996) and most studies of super-
sonic turbulence (e.g. Kim & Ryu 2005; Schmidt et al. 2006;
Konstandin et al. 2012). We can change the parametrisation
to any quantity that has a bijective mapping to the Mach
number. Figure 10 shows as examples the energy injection
rate of our forcing routine, which we fitted with ✏ / M2.91.
Other possibilities are the standard deviation of the den-
sity, which is �2

s = b log (1 + b2M2) (shown in Figure 6) or
the compressive Mach number as discussed in Konstandin
et al. (2012). Expressing the scaling exponent of the density
spectrum with the energy injection rate (via its influence
on the Mach number, see Figure 10) has two advantages.
First, it measures the total energy flowing through the cas-
cade as the turbulent boxes are in statistical steady state
and shows explicitly that we do not need the Mach num-
ber as additional parameter to describe a supersonic tur-
bulent flow. Hence, our results for the density spectrum of
supersonic turbulence suggest that Komogorovs second hy-
pothesis holds, which states that all small scale statistical
properties are uniquely and universally determined by the
scale ` and the mean energy dissipation rate ✏ (Kolmogorov
1941a,b). The second advantage is that it o↵ers additional
interpretations of our results.

6 SUMMARY

We analyse the properties of turbulence using a suite of
three-dimensional numerical simulations which are contin-
uously driven on the largest scales. The forcing scheme con-
sists both solenoidal (transverse) and compressive (longitu-
dinal) modes in equal parts. We model driven, compress-
ible, isothermal, turbulence with rms Mach numbers rang-
ing from the subsonic to the highly supersonic regime. We
find the relation �2

s = b log (1 + b2M2) between the Mach
number and the standard deviation of the density distribu-
tion, which improves the fit significantly. We derive this re-
lation with the shock jump condition and the Fokker-Planck
equation (Section 4.1). We find b = 0.457 ± 0.007 with the
new proposed formula describing the mixture of compres-
sive and solenoidal modes of the velocity field, which is in
agreement with our driving scheme. By employing a hier-
archical Bayesian fitting method, we estimate the param-
eters describing the scaling relation of the density power
spectrum. The density power spectra follow power laws,
D / k⇣(M), with a scaling exponent depending on the
Mach number (Section 4.4) in agreement with the theory of
Saichev & Woyczynski (1996). We find that ⇣(M) = ↵M�

with ↵ scattering slightly with resolution, whereas � gets
systematically shallower. We model that e↵ect and extrap-
olate to the limit of infinite resolution (equation 20) to find
⇣(M) = (�1.91± 0.01)M�0.30±0.03. We validate this result
by testing the influence of varying position and width of the
fitting range, as well as the uncertainty of measured scaling
exponents of the density spectrum on the inferred parame-
ters (Appendix A).

The dependence of the scaling exponent on the aver-
age Mach number of the density spectrum implies a depen-
dence of the fractal dimension on the Mach number (Sec-
tion 5.1). In the proposed model the fractal dimension is
D = 2�1/2 ⇣(M) = 2+0.96M�0.30. The fractal dimension
is D = 2 in the strong shock regime and D = 3 in the incom-
pressible limit, which is reached at the critical Mach number
Mcrit ⇡ 0.86. This is in agreement with the observations of
Elmegreen & Falgarone (1996, and references therein) sug-
gesting an overall fractal dimension of interstellar clouds in
the range D ⇡ 2.0� 2.7.

We also determine how the parameters depend on the
wavenumber and quantify the deviation from a pure power
law by moving the fitting range systematically over the den-
sity spectrum (Section 4.3). This analysis reveals that the
density power spectra are slightly curved. This curvature
gets more pronounced with increasing Mach number. The
density spectra are steeper close to the forcing scale, shal-
low at intermediate scales and again steeper on small scales.
The height of this bump in the local scaling exponents in-
creases with the Mach number.

We develop a physically motivated fitting formula re-
producing the deviations from a pure power law based
on the Mach number dependence of the scaling exponent
of the density power spectrum (Section 5.2). We propose
D(k) = D0k

⇣k⌘
with ⇣ = ↵M� and a new parameter ⌘ de-

scribing the deviation of the spectrum from a pure power law
with fixed scaling exponent. This functionality describes all
density spectra down to wave numbers of k ⇡ 80. We mea-
sure ⌘ = �0.005 ± 0.01 in the low Mach number regime
such that in this case the density power spectrum follows
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and

�2
⇢ = exp (�2

s)� 1 . (10)

Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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Fig. 4.— Std. dev. of the mass-density �⇢ as a function of the std. dev. of the logarithm of the mass-density �s, measured volume-weighted
(left panel) and mass-weighted (right panel). The deviations of the measurements from the black solid lines, equation (??), quantify the
deviations from a log-normally distributed mass density.

Fig. 5.— The mass-weighted PDFs of the logarithm of the mass density (left panels) and the compressible part of the local Mach number
(right panels) for di↵erent r.m.s. Mach numbers, resolutions and both types of forcing. In the inset, a magnification of the PDFs obtained
with solenoidal forcing for M = 0.1 are shown. The error bars in each panel indicate the std. dev. of the temporal fluctuations.

is a function of the density PDF. Figure ?? (upper left
panel) shows the measured std. dev. of the mass den-
sity as a function of the r.m.s. Mach number for di↵erent
resolutions and both types of forcing. The error bars
in each panel of figure ?? indicate the std. dev. of the
temporal fluctuations of the measured quantities. They
do not include any potential systematic errors stemming
from, e.g., the numerical scheme or implementation of
the forcing algorithm. Thus, we interpret the error bars
as a lower limit of the real uncertainty. The dotted and
dashed-dotted lines correspond to the model of ?, which
describes the proportionality parameter b as a function of
the turbulent forcing. This model predicts for solenoidal
forcing b = 1/3 and for compressive forcing b = 1. Our
measurements agree with the model of ? in the super-
sonic case for both types of forcing. We see small devi-
ations from the model in the simulations with M = 15,
which is caused by our limited resolution (see figure ??).
The std. dev.s of the density distribution of the simu-
lation with solenoidal forcing are smaller than the pre-
diction of the model in the subsonic case. In the sub-
sonic regime, the deviations are caused by the thermal
pressure, which damps density variations and compress-
ible modes of the velocity field and reduces the measured
std. dev. below the model prediction as discussed in sec-
tion ??. The upper right panel of figure ?? shows the
mass-weighted, logarithmic std. dev. �

s,M

as a function
of the r.m.s. Mach number. The dotted and dashed-
dotted lines correspond to the standard model for the
logarithmic density variance,

�

2

s

= ln(1 + b

2M2) (8)

with b = 1/3 for solenoidal and b = 1 for compressive
forcing. Equation (??) follows from equations (??) and
(??) and was recently derived analytically by ? using the
shock-jump conditions and averaging over an ensemble of
shock waves. The deviations of our numerical data from
this standard model are only significant for solenoidal
forcing in the subsonic regime, while our data are in ex-
cellent agreement with equation (??) for both solenoidal
and compressive forcing in the supersonic regime, given
our resolution dependence of the M = 15 data points
(see figure ??, right panel). Our results are in agreement
with ?, who found deviations from the linear relation
with �

⇢

in the subsonic regime with solenoidal forcing,
and with ?, who analysed one-dimensional simulations
with only compressive forcing and 0.5  M  3 and
found the linear relation between M and �

⇢

with b = 1.
? analysed three dimensional simulations with purely
solenoidal forcing and r.m.s. Mach numbers in between
2  M  20 and found b = 1/3 in excellent agreement
with our result. As they did not analyse the subsonic
regime with solenoidal forcing they did not observe the
large deviations in the subsonic regime. Our analysis
complements these studies with measurements in both
the subsonic and supersonic regime and for purely com-

pressive forcing.

3.5. Physical origin of density fluctuations in turbulent

flows

Studying the continuity equation (??), one can argue
that variations of the density can only be caused by the
divergence of the velocity field. Given that a vector field
can be decomposed in a gradient field and a rotation field
and that the divergence of a rotation field vanishes, we
conclude that the density variations can only be caused
by the compressible modes of the velocity. A similar
model has also been suggested by ?, where the param-
eter b in equations (??) and (??) was approximated by
the ratio of compressible to total velocity fluctuations.
As we want to understand the physical origin of the
density fluctuations, we replace the r.m.s. Mach number
and the b-parameter with the compressible part of the
r.m.s. Mach number, M

comp

, in equation (??), where
M is in fact the std. dev. of the velocity distribution,
and b is proportional to the ratio of compressible to total
velocity fluctuations and depends on the forcing. The
lower panels of figure ?? show the density fluctuations as
a function of M

comp

. The data points show a clear corre-
lation. The di↵erent behaviour of the simulations driven
with solenoidal and compressive forcing are significantly
reduced. We added in figure ?? a function (dotted line)
for the relation �

⇢

=
p
3M

comp

, which is the simplest
model for this relation assuming isotropy. The factor ofp
3 is due to the fact that we use the distribution of the

compressible modes of the velocity field averaged over
the three directions of the coordinate system

Mtot

comp

=
q

M2

comp, x

+M2

comp, y

+M2

comp, z

(9)

=
p
3M

comp

.

Our simple model fits the data, but shows deviations
for the simulations with solenoidal forcing and the low-
est and highest Mach numbers. The deviations for the
M = 15 simulation are again caused by the resolution
dependency of �

⇢

. Additionally, we perform a fit of our
data (black solid line) with two free parameters,

�

⇢

= ↵

p
3M�

comp

(10)

for the density relation. We obtain a normalisation
↵ = 1.0 ± 0.1 and a slope � = 0.85 ± 0.04. For the
s-relation we transform the fitted function with equation
(??). The measurements of the std. dev. of the density
have larger deviations from the model as the measure-
ments of the std. dev. of s. However, the model fits
the measurements in both cases and provides a good de-
scription for the data points in the subsonic regime with
solenoidal forcing, which are strongly influenced by sound
waves. We conclude that the thermal pressure damps the
velocities in compressible modes in a way that the rela-
tion between the velocities in compressible modes and
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forcing as a sign of numerical dissipation and finite sam-
pling. In the highly supersonic regime the medium is
dominated by shock fronts, high-density gradients and
strong intermittent fluctuations, which are building up in
the high-density tail and require high resolution to con-
verge. As the high-density tail is always truncated due
to limited numerical resolution (see ?????) we do not
fully resolve them in the M = 5.5 case and an additional
dissipation occurs. This e↵ect is stronger in the simu-
lations with compressive forcing and becomes stronger
with increasing r.m.s. Mach number for both types of
forcing (not shown here). However, increasing the res-
olution has only little influence on the deviations from
the Gaussian distribution in the low-density tail of the
mass-weighted PDFs.

With the assumption of a log-normally distributed
mass density, it can be shown that the std. dev. of the
Gaussian-distributed quantity s is (see ?)

�

2

s

= ln (1 + �

2

⇢

) . (7)

Figure ?? shows �

⇢

as a function of �
s

for our volume-
weighted (left panel) and mass-weighted (right panel)
distributions. The volume- and the mass-weighted mea-
surements of the std. dev. of s show increasing deviations
from equation (??) with increasing r.m.s. Mach numbers
for both types of forcing. However, the deviations are
smaller in the mass-weighted case than in the volume-
weighted one. The assumption of Gaussianity, which is
implied in equation (??), is better fulfilled for the mass-
weighted case. Figure ?? also shows that our measure-
ments withM = 15 are not converged with resolution for
both types of forcing. Our measurements are in agree-
ment with ?, who showed that direct measurements of
�

⇢

show a stronger dependency on resolution than mea-
surements of �

s

.
All volume-weighted measurements show a clear trend
towards the relation (??) with increasing resolution.
However, the data points do not fit relation (??) for
M = 15 with solenoidal forcing and in all the supersonic
cases with compressive forcing, although the data points
with M = 2 and M = 5.5 with compressive forcing
are nearly converged with resolution. Considering that
the std. dev. �

s,M

of the mass-weighted PDF is more
compatible with the scaling for a log-normal PDF, equa-
tion (??), and that the resolution dependence of �

s,M

is
weaker that for �

s,V

, we prefer to use �

s,M

as estimate
for the turbulent density fluctuations in the following.

3.3. The probability density function of the density and

of the compressible modes in the velocity field

Figure ?? shows the mass-weighted PDFs of the quan-
tity s (left panels) and the volume-weighted PDFs of the
compressible modes of the velocity field normalised to the
sound speed M

comp

= v

comp

/c

s

(right panels) for di↵er-
ent r.m.s. Mach numbers and both types of forcing. The
PDFs of the logarithm of the density largely follow Gaus-
sian distributions for all supersonic r.m.s. Mach numbers.
We added Gaussian functions (black solid lines), with
the first- and second-order moments calculated from our
distributions in figure ??. The high-density tails of the
distributions show deviations from the Gaussian shape,
which increase with increasing r.m.s. Mach number. Also
the deviations from the Gaussian distribution in the low-

density tail, as discussed in section ??, get more pro-
nounced with increasing r.m.s. Mach number. Thereby,
we have large deviations of our measurement from the
Gaussian distributions in the M = 15 case and the cal-
culated std. dev. does not correspond to the std. dev. of
the underlying Gaussian distribution.
The density distributions of the simulations driven by
solenoidal forcing in the subsonic regime show signifi-
cant deviations from the log-normal shape, which be-
come stronger as M decreases. These distributions be-
come more asymmetric and more peaked. The di↵erent
behaviour of the PDFs in the subsonic regime especially
for the solenoidal forcing is caused by the di↵erent phys-
ical processes acting here. In the subsonic regime sound
waves transfer information faster than the averaged flow
of the medium, such that the thermal pressure increases
before two converging flows can collide. This process pre-
vents colliding flows from producing high-density regions
and causes the sharp edge at the high-density wing of the
distributions. The thermal pressure also decelerates the
velocities in compressible modes, such that the PDF of
M

comp

also shows a narrow, peaky and intermittent be-
haviour for the solenoidal forcing. This process is just
visible for solenoidal forcing, because in the compressive
forcing case the velocities in compressible modes are re-
injected by the forcing to hold the r.m.s. Mach number
constant. This is the reason why the thermal pressure
does not have such a strong influence there.
The right panels of figure ?? show the PDFs of M

comp

,
where M

comp

is calculated by transforming the velocity
field into Fourier space and applying the same projec-

tion tensor we use for the forcing field, P k
ij

= k

i

k

j

/k

2.
After transforming it back into real space, we calculate
the std. dev. of the components, which we average af-
terwards over the three directions of the coordinate sys-
tem x, y, z. The distributions of M

comp

are symmetric
with zero mean and have an increasing std. dev. with
increasing r.m.s. Mach number. The distributions ob-
tained with compressive forcing are always broader than
with solenoidal forcing at the same r.m.s. Mach number.
The PDFs of M

comp

are Gaussian (black solid lines) with
deviations in both wings. These are the signpost of tur-
bulent intermittency. The deviations do not show a clear
trend with the r.m.s. Mach number.
The PDF of M

comp

obtained with solenoidal forcing in
the subsonic regime with M = 0.1 shows the strongest
deviations from the Gaussian shape with a narrow,
peaky, intermittent distribution. These deviations are
caused by the thermal pressure, as discussed above.

3.4. Relation between the r.m.s. Mach number and the

standard deviation of the density

In ? and ? the authors found that the std. dev. of
the PDF of the mass density �

⇢

is proportional to the
r.m.s. Mach number in a turbulent flow. The std. dev. of
the mass density is an important quantity especially in
astrophysics, where the Mach number dependency of
density fluctuations is used to derive analytic expressions
for the core mass function (CMF) and the stellar ini-
tial mass function (IMF) (e.g., ???). On galactic scales
it is used to reproduce the Kennicutt-Schmidt relation
(?), and ? suggests that the star formation e�ciency
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a constant energy flux through the scales. With this forc-
ing scheme we drive rms Mach numbers of M ⇡ 1, 5, 10, 16
in the statistically steady state of fully developed turbu-
lence for the 2563, 5123, and 10243 resolutions. Additionally,
we performed 20 simulations with systematically increas-
ing Mach numbers ranging from M = 0.65 up to M = 16
equally spaced with �M ⇡ 0.8 for the lower resolution 2563.
Therefore, we end up with 32 di↵erent simulations in total.
We start with homogeneously distributed gas at rest and let
it evolve for & 11T and store the relevant quantities every
0.1T .

Figure 1 shows the time evolution of the rms Mach num-
ber (left panel) and the standard deviation of the density �⇢

(right panel) of the simulations for di↵erent resolutions. Af-
ter about two turbulent crossing times the velocity and the
density fields are in the statistically steady state of fully
developed turbulence. Both quantities measure the global
one-point characteristic of the flow and are independent of
the resolution. We analyse in the following the spectral be-
haviour of the simulations for t > 3T .

Figure 2 presents the mass density in a cut trough the
xy-plane at z = 0 of the simulation M01-10243 (top left),
M05-10243 (top right),M10-10243 (bottom left), andM16-
10243 (bottom right) to illustrate the flow pattern in the
statistically steady state of fully developed turbulence. The
figures illustrate that the density contrast is increasing with
the Mach number in general. A closer look reveals that the
M01 simulation lacks density fluctuations on small scales,
whereas the higher Mach numbers show density fluctuations
on all scales. This already indicates that the density spec-
trum is steeper at low Mach numbers, which we will analyse
in the following in more detail.

3 METHODS

The Fourier spectrum of the density field is defined as

D(k, ti, M)dk = 4⇡k2⇢̂(k, ti, M) · ⇢̂⇤(k, ti, M) dk , (4)

where ⇢̂ is the Fourier-transformed density field and ⇢̂⇤ its
complex conjugate. We use the model described in Kon-
standin et al. (2015) performing a hierarchical Bayesian lin-
ear regression on the logarithm of the power spectra. We
assume that every time snapshot ti of the density spectrum
D(k, ti, M) follows a power law,

D(k, ti, M) = A(ti, M)k⇣(ti,M)��(k, M, ti) , (5)

with the amplitudes A(ti, M), the scaling exponents
⇣(ti, M), and the scatter term ��(k, M, ti). This method
has the advantage that errors and uncertainties are treated
self consistently, averaging the data is not necessary, as all
snapshots of the spectra are fitted simultaneously, and it
provides valid estimates for the fitting parameters, their er-
rors, as well as their time variation. We apply the method
to extended fitting ranges, as well as small fitting windows
only containing seven data points [k � 3, k + 3], which we
move systematically over the spectrum and interpret the re-
sult as local scaling exponent at the scale k. We refer the
reader to Konstandin et al. (2015) for a detailed description
of the Bayesian model, various test on the parameter esti-
mates (like the influence of the fitting range), and a compar-
ison with ordinary linear regression methods applied to the
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Figure 3. Density power spectra of the simulation with 256

3

(dotted), 512

3
(dashed), and 1024

3
(solid) resolution and di↵erent

Mach numbers averaged over time t > 3T in the statistically

steady state of fully developed turbulence.

averaged spectrum as well as the individual power spectra.
We focus the discussion in the following on the mean group
slope, its uncertainty and variation with time. The mean
group slope can be interpreted as a time averaged scaling
exponent.

4 RESULTS

The Parseval theorem

�2
⇢ + µ2

⇢ =

Z 1

0

D(k) dk (6)

links the integral of the density spectrum with the variance
and the squared mean of the mass density probability distri-
bution function. Hence, the first two moments of the density
distribution describes the area below the density power spec-
trum. We therefore discuss in Section (4.1) the probability
density function with its moments before we focus on the
density spectrum and its scaling behaviour in the following
Sections. Figure 3 presents the density power spectra for dif-
ferent Mach numbers and di↵erent resolutions. The mildly
supersonic simulation M01 stands out because of its lower
amplitude in comparison to the highly supersonic simula-
tions. Figure 3 indicates that the area gain of the density
spectrum for higher Mach numbers happens through a shal-
lower scaling exponent instead of an increasing amplitude.
Comparing the resolutions in Figure 3 reveals that the spec-
tra with M01 are hardly distinguishable for k < 20, whereas
in the highly supersonic simulations the resolution has an
influence for k & 5, depending on the Mach number.

4.1 The probability distribution function (PDF)
of the mass density

Passot & Vázquez-Semadeni (1998) propose a heuristic
model for the density PDF based on the density contrast
from the shock jump condition in an isothermal medium.
They assume that the logarithmic density variation �s by

c� 2015 RAS, MNRAS 000, 1–12
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Figure 8. Scaling exponents as a function of the Mach number,

measured in k 2 [4 : 10] for the simulations with 256

3
(cyan),

k 2 [4 : 17] for 512

3
(light-green), and k 2 [4 : 31] for 1024

3

(dark-green) resolution. The thick error bar indicates the uncer-

tainty of the group scaling exponent and the thin error bar states

the variation of the scaling exponent with time. The results of

di↵erent authors are shown with grey symbols, as stated in the

legend. Additionally, the power law fits to the 256

3
simulation

(dotted), 512

3
(dotted), and 1024

3
(solid) are also shown with

the fitting values stated in the legend.

by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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where we added the unit step function ⇥(`), as ⇢(`) is only
defined for positive scales `. The Fourier transformation of
equation (24) gives

⇢(k) = �(1� 3�)k�(1�3�) , (25)

for the magnitude, neglecting the phase, and with � being
the Gamma function. Using the definition of the density
spectrum equation (4) and equation (1) we get

� (1� 3�) =
1
2
⇣(M) , (26)

which leads to

� =
1
3
+

1
6
↵M� , (27)

and finally results in

D = 2� 1
2
↵M� . (28)

Note that equation (28) is in agreement with the fractal
dimension defined in Stutzki et al. (1998), who derived a
relation between the scaling exponent of the density spec-
trum and the fractal drift exponent (Hurst exponent) based
on the theory of fractal images. They get D = E + 1 � H,
with the dimensionality E = 2 of the fractal surface and
the Hurst exponent H = (⇣ � 2) /2. In the case of fractal
images, D can be interpreted as fractal box coverage dimen-
sion. With equation (28) we get a fractal dimension of D = 2
and � = 1/3 in the limit M ! 1. Note that this is a spe-
cial case, as for � ! 1/3 equation (24) is ⇥(`)`�1 = �(`) the
Dirac Delta function, which Fourier transforms to constant
magnitude / k0 with a zero phase instead of equation (25),
as �(0) is not defined.

At low Mach numbers the average flow velocity is
smaller than the sound speed such that it can not produce
significant overdensities anymore. To describe this transi-
tion, we define a critical Mach number Mcrit below which
we assume a constant density in equation (24). The Fourier
transformation in equations (25) and (4) give a scaling ex-
ponent for the density spectrum of ⇣(Mcrit) = �2 in agree-
ment with the theory of Saichev & Woyczynski (1996). As-
suming � = 0 and D = 3 in equations (27) and (28), we
obtain

Mcrit =

✓
�2
↵

◆1/�

= 0.86 . (29)

using the measurements of equation (22). For Mach numbers
M < Mcrit it follows that ⇣ < �2 and � becomes negative.
Therefore, � can not be interpreted as compression parame-
ter anymore and from equation (24) we see that the density
fluctuations are confined to the small scales. This regime
is dominated by sound waves which have a steep spectrum
with ⇣ = �7/3 (George et al. 1984). The proposed range for
the fractal dimension is also in agreement with observations
(e.g. Elmegreen & Falgarone 1996; Sánchez et al. 2007, and
references therein) and simulations (Federrath et al. 2009;
Konstandin et al. 2012) suggesting an overall fractal dimen-
sion of interstellar clouds in the range D ⇡ 2.0� 2.7.

5.2 The curvature of the density power spectrum

The second conclusion concerns the density spectrum itself.
The discussion in section 4 has shown that the scaling ex-
ponents of the density spectrum are not only changing in
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tion (30) as dotted lines. The fitting parameters of the scaling ex-

ponents are collected in the legend. Including the new curvature

parameter ⌘ to the model improved the fit significantly although

⌘ is in most cases very small.

between the simulations with di↵erent Mach numbers (Fig-
ure 8) but also in each simulation with the scale (Figure
7). Considering a driving force producing a turbulent flow
with the Mach number M0 = V0/cs at the scale `0 and as-
suming a power law scaling `p of the velocity fluctuations,
there is a scale `s at which the velocity fluctuations are of
the order of the sound speed cs. This scale is called the
sonic scale (Vázquez-Semadeni et al. 2003). According to
our analysis in Section 4.4 we expect a scaling exponent of
the density spectrum of ⇣ = ↵M�

0 above the sonic scale.
Increasing the Mach number of the box to M0 > M0 yields
V 0/cs = (`0/`

0
s)

p
> (`0/`s)

p = V0/cs after reaching a statis-
tically steady state, resulting in a smaller sonic scale `s > `0s
and a shallower density spectrum ⇣ < ⇣0. However, we can

find a scale ˜̀0 given by (˜̀0/`0s)
p !
= (`0/`s)

p = M0. This im-
plies that the turbulent flow with higher Mach number M0

contains a sub volume of size ˜̀0 with the Mach number M0,
the same dynamical range relative to the sonic scale, and
therefore the same scaling exponent ⇣ as the original box,
while ⇣0 = ↵(M0)� > ⇣ for the new box of size `0. This
example illustrates that we have to include a dependence on
the scale in our model of the scaling exponent, which we will
do in the following paragraph.

Guided by this picture and the variation of the local
scaling exponents with the scale, we make a power law
ansatz for the scaling exponent ⇣(M, k) = ⇣(M)k⌘. We ne-
glect this variation with the scale in Section 4, which can
be justified as we investigate in equations (20) and (22)
the scaling behaviour of the simulations only in a limited
range close to the forcing regime. Using the scaling expo-
nent ⇣(M) = ↵M� established in Section 4.4 and add the
scaling factor k⌘ to account for a curved spectrum results in

D(k) = D0(M)k↵M� k⌘(M)

. (30)

The fit in k 2 [4 : 31] of the density spectra with 10243

is shown in Figure (9) and the resulting fitting parameter
for the scaling exponents are collected in its legend. We per-
formed a hierarchical Bayesian model fitting all spectra with
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k 2 [4 : 17] for 512
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(dark-green) resolution. The thick error bar indicates the uncer-

tainty of the group scaling exponent and the thin error bar states

the variation of the scaling exponent with time. The results of

di↵erent authors are shown with grey symbols, as stated in the

legend. Additionally, the power law fits to the 256

3
simulation

(dotted), 512

3
(dotted), and 1024

3
(solid) are also shown with

the fitting values stated in the legend.

by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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where we added the unit step function ⇥(`), as ⇢(`) is only
defined for positive scales `. The Fourier transformation of
equation (24) gives

⇢(k) = �(1� 3�)k�(1�3�) , (25)

for the magnitude, neglecting the phase, and with � being
the Gamma function. Using the definition of the density
spectrum equation (4) and equation (1) we get

� (1� 3�) =
1
2
⇣(M) , (26)

which leads to

� =
1
3
+

1
6
↵M� , (27)

and finally results in

D = 2� 1
2
↵M� . (28)

Note that equation (28) is in agreement with the fractal
dimension defined in Stutzki et al. (1998), who derived a
relation between the scaling exponent of the density spec-
trum and the fractal drift exponent (Hurst exponent) based
on the theory of fractal images. They get D = E + 1 � H,
with the dimensionality E = 2 of the fractal surface and
the Hurst exponent H = (⇣ � 2) /2. In the case of fractal
images, D can be interpreted as fractal box coverage dimen-
sion. With equation (28) we get a fractal dimension of D = 2
and � = 1/3 in the limit M ! 1. Note that this is a spe-
cial case, as for � ! 1/3 equation (24) is ⇥(`)`�1 = �(`) the
Dirac Delta function, which Fourier transforms to constant
magnitude / k0 with a zero phase instead of equation (25),
as �(0) is not defined.

At low Mach numbers the average flow velocity is
smaller than the sound speed such that it can not produce
significant overdensities anymore. To describe this transi-
tion, we define a critical Mach number Mcrit below which
we assume a constant density in equation (24). The Fourier
transformation in equations (25) and (4) give a scaling ex-
ponent for the density spectrum of ⇣(Mcrit) = �2 in agree-
ment with the theory of Saichev & Woyczynski (1996). As-
suming � = 0 and D = 3 in equations (27) and (28), we
obtain

Mcrit =

✓
�2
↵

◆1/�

= 0.86 . (29)

using the measurements of equation (22). For Mach numbers
M < Mcrit it follows that ⇣ < �2 and � becomes negative.
Therefore, � can not be interpreted as compression parame-
ter anymore and from equation (24) we see that the density
fluctuations are confined to the small scales. This regime
is dominated by sound waves which have a steep spectrum
with ⇣ = �7/3 (George et al. 1984). The proposed range for
the fractal dimension is also in agreement with observations
(e.g. Elmegreen & Falgarone 1996; Sánchez et al. 2007, and
references therein) and simulations (Federrath et al. 2009;
Konstandin et al. 2012) suggesting an overall fractal dimen-
sion of interstellar clouds in the range D ⇡ 2.0� 2.7.

5.2 The curvature of the density power spectrum

The second conclusion concerns the density spectrum itself.
The discussion in section 4 has shown that the scaling ex-
ponents of the density spectrum are not only changing in
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Figure 9. Same as Figure 3, additionally showing the fit of equa-

tion (30) as dotted lines. The fitting parameters of the scaling ex-

ponents are collected in the legend. Including the new curvature

parameter ⌘ to the model improved the fit significantly although

⌘ is in most cases very small.

between the simulations with di↵erent Mach numbers (Fig-
ure 8) but also in each simulation with the scale (Figure
7). Considering a driving force producing a turbulent flow
with the Mach number M0 = V0/cs at the scale `0 and as-
suming a power law scaling `p of the velocity fluctuations,
there is a scale `s at which the velocity fluctuations are of
the order of the sound speed cs. This scale is called the
sonic scale (Vázquez-Semadeni et al. 2003). According to
our analysis in Section 4.4 we expect a scaling exponent of
the density spectrum of ⇣ = ↵M�

0 above the sonic scale.
Increasing the Mach number of the box to M0 > M0 yields
V 0/cs = (`0/`

0
s)

p
> (`0/`s)

p = V0/cs after reaching a statis-
tically steady state, resulting in a smaller sonic scale `s > `0s
and a shallower density spectrum ⇣ < ⇣0. However, we can

find a scale ˜̀0 given by (˜̀0/`0s)
p !
= (`0/`s)

p = M0. This im-
plies that the turbulent flow with higher Mach number M0

contains a sub volume of size ˜̀0 with the Mach number M0,
the same dynamical range relative to the sonic scale, and
therefore the same scaling exponent ⇣ as the original box,
while ⇣0 = ↵(M0)� > ⇣ for the new box of size `0. This
example illustrates that we have to include a dependence on
the scale in our model of the scaling exponent, which we will
do in the following paragraph.

Guided by this picture and the variation of the local
scaling exponents with the scale, we make a power law
ansatz for the scaling exponent ⇣(M, k) = ⇣(M)k⌘. We ne-
glect this variation with the scale in Section 4, which can
be justified as we investigate in equations (20) and (22)
the scaling behaviour of the simulations only in a limited
range close to the forcing regime. Using the scaling expo-
nent ⇣(M) = ↵M� established in Section 4.4 and add the
scaling factor k⌘ to account for a curved spectrum results in

D(k) = D0(M)k↵M� k⌘(M)

. (30)

The fit in k 2 [4 : 31] of the density spectra with 10243

is shown in Figure (9) and the resulting fitting parameter
for the scaling exponents are collected in its legend. We per-
formed a hierarchical Bayesian model fitting all spectra with
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Figure 8. Scaling exponents as a function of the Mach number,

measured in k 2 [4 : 10] for the simulations with 256

3
(cyan),

k 2 [4 : 17] for 512

3
(light-green), and k 2 [4 : 31] for 1024

3

(dark-green) resolution. The thick error bar indicates the uncer-

tainty of the group scaling exponent and the thin error bar states

the variation of the scaling exponent with time. The results of

di↵erent authors are shown with grey symbols, as stated in the

legend. Additionally, the power law fits to the 256

3
simulation

(dotted), 512

3
(dotted), and 1024

3
(solid) are also shown with

the fitting values stated in the legend.

by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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a constant energy flux through the scales. With this forc-
ing scheme we drive rms Mach numbers of M ⇡ 1, 5, 10, 16
in the statistically steady state of fully developed turbu-
lence for the 2563, 5123, and 10243 resolutions. Additionally,
we performed 20 simulations with systematically increas-
ing Mach numbers ranging from M = 0.65 up to M = 16
equally spaced with �M ⇡ 0.8 for the lower resolution 2563.
Therefore, we end up with 32 di↵erent simulations in total.
We start with homogeneously distributed gas at rest and let
it evolve for & 11T and store the relevant quantities every
0.1T .

Figure 1 shows the time evolution of the rms Mach num-
ber (left panel) and the standard deviation of the density �⇢

(right panel) of the simulations for di↵erent resolutions. Af-
ter about two turbulent crossing times the velocity and the
density fields are in the statistically steady state of fully
developed turbulence. Both quantities measure the global
one-point characteristic of the flow and are independent of
the resolution. We analyse in the following the spectral be-
haviour of the simulations for t > 3T .

Figure 2 presents the mass density in a cut trough the
xy-plane at z = 0 of the simulation M01-10243 (top left),
M05-10243 (top right),M10-10243 (bottom left), andM16-
10243 (bottom right) to illustrate the flow pattern in the
statistically steady state of fully developed turbulence. The
figures illustrate that the density contrast is increasing with
the Mach number in general. A closer look reveals that the
M01 simulation lacks density fluctuations on small scales,
whereas the higher Mach numbers show density fluctuations
on all scales. This already indicates that the density spec-
trum is steeper at low Mach numbers, which we will analyse
in the following in more detail.

3 METHODS

The Fourier spectrum of the density field is defined as

D(k, ti, M)dk = 4⇡k2⇢̂(k, ti, M) · ⇢̂⇤(k, ti, M) dk , (4)

where ⇢̂ is the Fourier-transformed density field and ⇢̂⇤ its
complex conjugate. We use the model described in Kon-
standin et al. (2015) performing a hierarchical Bayesian lin-
ear regression on the logarithm of the power spectra. We
assume that every time snapshot ti of the density spectrum
D(k, ti, M) follows a power law,

D(k, ti, M) = A(ti, M)k⇣(ti,M)��(k, M, ti) , (5)

with the amplitudes A(ti, M), the scaling exponents
⇣(ti, M), and the scatter term ��(k, M, ti). This method
has the advantage that errors and uncertainties are treated
self consistently, averaging the data is not necessary, as all
snapshots of the spectra are fitted simultaneously, and it
provides valid estimates for the fitting parameters, their er-
rors, as well as their time variation. We apply the method
to extended fitting ranges, as well as small fitting windows
only containing seven data points [k � 3, k + 3], which we
move systematically over the spectrum and interpret the re-
sult as local scaling exponent at the scale k. We refer the
reader to Konstandin et al. (2015) for a detailed description
of the Bayesian model, various test on the parameter esti-
mates (like the influence of the fitting range), and a compar-
ison with ordinary linear regression methods applied to the
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Figure 3. Density power spectra of the simulation with 256

3

(dotted), 512

3
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Mach numbers averaged over time t > 3T in the statistically

steady state of fully developed turbulence.

averaged spectrum as well as the individual power spectra.
We focus the discussion in the following on the mean group
slope, its uncertainty and variation with time. The mean
group slope can be interpreted as a time averaged scaling
exponent.

4 RESULTS

The Parseval theorem

�2
⇢ + µ2

⇢ =

Z 1

0

D(k) dk (6)

links the integral of the density spectrum with the variance
and the squared mean of the mass density probability distri-
bution function. Hence, the first two moments of the density
distribution describes the area below the density power spec-
trum. We therefore discuss in Section (4.1) the probability
density function with its moments before we focus on the
density spectrum and its scaling behaviour in the following
Sections. Figure 3 presents the density power spectra for dif-
ferent Mach numbers and di↵erent resolutions. The mildly
supersonic simulation M01 stands out because of its lower
amplitude in comparison to the highly supersonic simula-
tions. Figure 3 indicates that the area gain of the density
spectrum for higher Mach numbers happens through a shal-
lower scaling exponent instead of an increasing amplitude.
Comparing the resolutions in Figure 3 reveals that the spec-
tra with M01 are hardly distinguishable for k < 20, whereas
in the highly supersonic simulations the resolution has an
influence for k & 5, depending on the Mach number.

4.1 The probability distribution function (PDF)
of the mass density

Passot & Vázquez-Semadeni (1998) propose a heuristic
model for the density PDF based on the density contrast
from the shock jump condition in an isothermal medium.
They assume that the logarithmic density variation �s by
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a constant energy flux through the scales. With this forc-
ing scheme we drive rms Mach numbers of M ⇡ 1, 5, 10, 16
in the statistically steady state of fully developed turbu-
lence for the 2563, 5123, and 10243 resolutions. Additionally,
we performed 20 simulations with systematically increas-
ing Mach numbers ranging from M = 0.65 up to M = 16
equally spaced with �M ⇡ 0.8 for the lower resolution 2563.
Therefore, we end up with 32 di↵erent simulations in total.
We start with homogeneously distributed gas at rest and let
it evolve for & 11T and store the relevant quantities every
0.1T .

Figure 1 shows the time evolution of the rms Mach num-
ber (left panel) and the standard deviation of the density �⇢

(right panel) of the simulations for di↵erent resolutions. Af-
ter about two turbulent crossing times the velocity and the
density fields are in the statistically steady state of fully
developed turbulence. Both quantities measure the global
one-point characteristic of the flow and are independent of
the resolution. We analyse in the following the spectral be-
haviour of the simulations for t > 3T .

Figure 2 presents the mass density in a cut trough the
xy-plane at z = 0 of the simulation M01-10243 (top left),
M05-10243 (top right),M10-10243 (bottom left), andM16-
10243 (bottom right) to illustrate the flow pattern in the
statistically steady state of fully developed turbulence. The
figures illustrate that the density contrast is increasing with
the Mach number in general. A closer look reveals that the
M01 simulation lacks density fluctuations on small scales,
whereas the higher Mach numbers show density fluctuations
on all scales. This already indicates that the density spec-
trum is steeper at low Mach numbers, which we will analyse
in the following in more detail.

3 METHODS

The Fourier spectrum of the density field is defined as

D(k, ti, M)dk = 4⇡k2⇢̂(k, ti, M) · ⇢̂⇤(k, ti, M) dk , (4)

where ⇢̂ is the Fourier-transformed density field and ⇢̂⇤ its
complex conjugate. We use the model described in Kon-
standin et al. (2015) performing a hierarchical Bayesian lin-
ear regression on the logarithm of the power spectra. We
assume that every time snapshot ti of the density spectrum
D(k, ti, M) follows a power law,

D(k, ti, M) = A(ti, M)k⇣(ti,M)��(k, M, ti) , (5)

with the amplitudes A(ti, M), the scaling exponents
⇣(ti, M), and the scatter term ��(k, M, ti). This method
has the advantage that errors and uncertainties are treated
self consistently, averaging the data is not necessary, as all
snapshots of the spectra are fitted simultaneously, and it
provides valid estimates for the fitting parameters, their er-
rors, as well as their time variation. We apply the method
to extended fitting ranges, as well as small fitting windows
only containing seven data points [k � 3, k + 3], which we
move systematically over the spectrum and interpret the re-
sult as local scaling exponent at the scale k. We refer the
reader to Konstandin et al. (2015) for a detailed description
of the Bayesian model, various test on the parameter esti-
mates (like the influence of the fitting range), and a compar-
ison with ordinary linear regression methods applied to the
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Figure 3. Density power spectra of the simulation with 256
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(dotted), 512

3
(dashed), and 1024

3
(solid) resolution and di↵erent

Mach numbers averaged over time t > 3T in the statistically

steady state of fully developed turbulence.

averaged spectrum as well as the individual power spectra.
We focus the discussion in the following on the mean group
slope, its uncertainty and variation with time. The mean
group slope can be interpreted as a time averaged scaling
exponent.

4 RESULTS

The Parseval theorem

�2
⇢ + µ2

⇢ =

Z 1

0

D(k) dk (6)

links the integral of the density spectrum with the variance
and the squared mean of the mass density probability distri-
bution function. Hence, the first two moments of the density
distribution describes the area below the density power spec-
trum. We therefore discuss in Section (4.1) the probability
density function with its moments before we focus on the
density spectrum and its scaling behaviour in the following
Sections. Figure 3 presents the density power spectra for dif-
ferent Mach numbers and di↵erent resolutions. The mildly
supersonic simulation M01 stands out because of its lower
amplitude in comparison to the highly supersonic simula-
tions. Figure 3 indicates that the area gain of the density
spectrum for higher Mach numbers happens through a shal-
lower scaling exponent instead of an increasing amplitude.
Comparing the resolutions in Figure 3 reveals that the spec-
tra with M01 are hardly distinguishable for k < 20, whereas
in the highly supersonic simulations the resolution has an
influence for k & 5, depending on the Mach number.

4.1 The probability distribution function (PDF)
of the mass density

Passot & Vázquez-Semadeni (1998) propose a heuristic
model for the density PDF based on the density contrast
from the shock jump condition in an isothermal medium.
They assume that the logarithmic density variation �s by
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a constant energy flux through the scales. With this forc-
ing scheme we drive rms Mach numbers of M ⇡ 1, 5, 10, 16
in the statistically steady state of fully developed turbu-
lence for the 2563, 5123, and 10243 resolutions. Additionally,
we performed 20 simulations with systematically increas-
ing Mach numbers ranging from M = 0.65 up to M = 16
equally spaced with �M ⇡ 0.8 for the lower resolution 2563.
Therefore, we end up with 32 di↵erent simulations in total.
We start with homogeneously distributed gas at rest and let
it evolve for & 11T and store the relevant quantities every
0.1T .

Figure 1 shows the time evolution of the rms Mach num-
ber (left panel) and the standard deviation of the density �⇢

(right panel) of the simulations for di↵erent resolutions. Af-
ter about two turbulent crossing times the velocity and the
density fields are in the statistically steady state of fully
developed turbulence. Both quantities measure the global
one-point characteristic of the flow and are independent of
the resolution. We analyse in the following the spectral be-
haviour of the simulations for t > 3T .

Figure 2 presents the mass density in a cut trough the
xy-plane at z = 0 of the simulation M01-10243 (top left),
M05-10243 (top right),M10-10243 (bottom left), andM16-
10243 (bottom right) to illustrate the flow pattern in the
statistically steady state of fully developed turbulence. The
figures illustrate that the density contrast is increasing with
the Mach number in general. A closer look reveals that the
M01 simulation lacks density fluctuations on small scales,
whereas the higher Mach numbers show density fluctuations
on all scales. This already indicates that the density spec-
trum is steeper at low Mach numbers, which we will analyse
in the following in more detail.

3 METHODS

The Fourier spectrum of the density field is defined as

D(k, ti, M)dk = 4⇡k2⇢̂(k, ti, M) · ⇢̂⇤(k, ti, M) dk , (4)

where ⇢̂ is the Fourier-transformed density field and ⇢̂⇤ its
complex conjugate. We use the model described in Kon-
standin et al. (2015) performing a hierarchical Bayesian lin-
ear regression on the logarithm of the power spectra. We
assume that every time snapshot ti of the density spectrum
D(k, ti, M) follows a power law,

D(k, ti, M) = A(ti, M)k⇣(ti,M)��(k, M, ti) , (5)

with the amplitudes A(ti, M), the scaling exponents
⇣(ti, M), and the scatter term ��(k, M, ti). This method
has the advantage that errors and uncertainties are treated
self consistently, averaging the data is not necessary, as all
snapshots of the spectra are fitted simultaneously, and it
provides valid estimates for the fitting parameters, their er-
rors, as well as their time variation. We apply the method
to extended fitting ranges, as well as small fitting windows
only containing seven data points [k � 3, k + 3], which we
move systematically over the spectrum and interpret the re-
sult as local scaling exponent at the scale k. We refer the
reader to Konstandin et al. (2015) for a detailed description
of the Bayesian model, various test on the parameter esti-
mates (like the influence of the fitting range), and a compar-
ison with ordinary linear regression methods applied to the
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averaged spectrum as well as the individual power spectra.
We focus the discussion in the following on the mean group
slope, its uncertainty and variation with time. The mean
group slope can be interpreted as a time averaged scaling
exponent.

4 RESULTS

The Parseval theorem
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links the integral of the density spectrum with the variance
and the squared mean of the mass density probability distri-
bution function. Hence, the first two moments of the density
distribution describes the area below the density power spec-
trum. We therefore discuss in Section (4.1) the probability
density function with its moments before we focus on the
density spectrum and its scaling behaviour in the following
Sections. Figure 3 presents the density power spectra for dif-
ferent Mach numbers and di↵erent resolutions. The mildly
supersonic simulation M01 stands out because of its lower
amplitude in comparison to the highly supersonic simula-
tions. Figure 3 indicates that the area gain of the density
spectrum for higher Mach numbers happens through a shal-
lower scaling exponent instead of an increasing amplitude.
Comparing the resolutions in Figure 3 reveals that the spec-
tra with M01 are hardly distinguishable for k < 20, whereas
in the highly supersonic simulations the resolution has an
influence for k & 5, depending on the Mach number.

4.1 The probability distribution function (PDF)
of the mass density

Passot & Vázquez-Semadeni (1998) propose a heuristic
model for the density PDF based on the density contrast
from the shock jump condition in an isothermal medium.
They assume that the logarithmic density variation �s by
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a constant energy flux through the scales. With this forc-
ing scheme we drive rms Mach numbers of M ⇡ 1, 5, 10, 16
in the statistically steady state of fully developed turbu-
lence for the 2563, 5123, and 10243 resolutions. Additionally,
we performed 20 simulations with systematically increas-
ing Mach numbers ranging from M = 0.65 up to M = 16
equally spaced with �M ⇡ 0.8 for the lower resolution 2563.
Therefore, we end up with 32 di↵erent simulations in total.
We start with homogeneously distributed gas at rest and let
it evolve for & 11T and store the relevant quantities every
0.1T .

Figure 1 shows the time evolution of the rms Mach num-
ber (left panel) and the standard deviation of the density �⇢

(right panel) of the simulations for di↵erent resolutions. Af-
ter about two turbulent crossing times the velocity and the
density fields are in the statistically steady state of fully
developed turbulence. Both quantities measure the global
one-point characteristic of the flow and are independent of
the resolution. We analyse in the following the spectral be-
haviour of the simulations for t > 3T .

Figure 2 presents the mass density in a cut trough the
xy-plane at z = 0 of the simulation M01-10243 (top left),
M05-10243 (top right),M10-10243 (bottom left), andM16-
10243 (bottom right) to illustrate the flow pattern in the
statistically steady state of fully developed turbulence. The
figures illustrate that the density contrast is increasing with
the Mach number in general. A closer look reveals that the
M01 simulation lacks density fluctuations on small scales,
whereas the higher Mach numbers show density fluctuations
on all scales. This already indicates that the density spec-
trum is steeper at low Mach numbers, which we will analyse
in the following in more detail.

3 METHODS

The Fourier spectrum of the density field is defined as

D(k, ti, M)dk = 4⇡k2⇢̂(k, ti, M) · ⇢̂⇤(k, ti, M) dk , (4)

where ⇢̂ is the Fourier-transformed density field and ⇢̂⇤ its
complex conjugate. We use the model described in Kon-
standin et al. (2015) performing a hierarchical Bayesian lin-
ear regression on the logarithm of the power spectra. We
assume that every time snapshot ti of the density spectrum
D(k, ti, M) follows a power law,

D(k, ti, M) = A(ti, M)k⇣(ti,M)��(k, M, ti) , (5)

with the amplitudes A(ti, M), the scaling exponents
⇣(ti, M), and the scatter term ��(k, M, ti). This method
has the advantage that errors and uncertainties are treated
self consistently, averaging the data is not necessary, as all
snapshots of the spectra are fitted simultaneously, and it
provides valid estimates for the fitting parameters, their er-
rors, as well as their time variation. We apply the method
to extended fitting ranges, as well as small fitting windows
only containing seven data points [k � 3, k + 3], which we
move systematically over the spectrum and interpret the re-
sult as local scaling exponent at the scale k. We refer the
reader to Konstandin et al. (2015) for a detailed description
of the Bayesian model, various test on the parameter esti-
mates (like the influence of the fitting range), and a compar-
ison with ordinary linear regression methods applied to the
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averaged spectrum as well as the individual power spectra.
We focus the discussion in the following on the mean group
slope, its uncertainty and variation with time. The mean
group slope can be interpreted as a time averaged scaling
exponent.

4 RESULTS

The Parseval theorem

�2
⇢ + µ2

⇢ =

Z 1

0

D(k) dk (6)

links the integral of the density spectrum with the variance
and the squared mean of the mass density probability distri-
bution function. Hence, the first two moments of the density
distribution describes the area below the density power spec-
trum. We therefore discuss in Section (4.1) the probability
density function with its moments before we focus on the
density spectrum and its scaling behaviour in the following
Sections. Figure 3 presents the density power spectra for dif-
ferent Mach numbers and di↵erent resolutions. The mildly
supersonic simulation M01 stands out because of its lower
amplitude in comparison to the highly supersonic simula-
tions. Figure 3 indicates that the area gain of the density
spectrum for higher Mach numbers happens through a shal-
lower scaling exponent instead of an increasing amplitude.
Comparing the resolutions in Figure 3 reveals that the spec-
tra with M01 are hardly distinguishable for k < 20, whereas
in the highly supersonic simulations the resolution has an
influence for k & 5, depending on the Mach number.

4.1 The probability distribution function (PDF)
of the mass density

Passot & Vázquez-Semadeni (1998) propose a heuristic
model for the density PDF based on the density contrast
from the shock jump condition in an isothermal medium.
They assume that the logarithmic density variation �s by
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Here, ⇢ denotes the mass density, v the velocity field, and
p the pressure. Observations indicate that the dense inter-
stellar medium and molecular clouds behave as an isother-
mal flow due to e�cient cooling processes (Elmegreen &
Scalo 2004). Accordingly, we simulate with equation (3) and
(4) an isothermal medium throughout this study such that
p = ⇢cs

2, with the sound speed cs.
We employ the FLASH4 (Fryxell et al. 2000; Dubey

et al. 2008) code to solve the set of partial di↵erential equa-
tions (3) and (4). We use the HLL5R solver (Waagan et al.
2011) on a uniform three-dimensional grid. To distinguish
between physical and numerical e↵ects, we run simulations
with 5123, and 10243 grid cells.

We compute the random forcing field F in Fourier space
as described by (Schmidt et al. 2009; Federrath et al. 2010),

dbF(k, t) = F0(k, Tac)P⇣(k)
dW(t)
Tac

� bF(k, t) dt
Tac

, (5)

where the dW(t) is a three-dimensional Gaussian random
increment with zero mean and standard deviation dt. P⇣(k)
is a projection tensor in Fourier space as a function of the
wave number k. In index notation, this operator is

P⇣

ij

(k) = ⇣P?
ij

(k) + (1� ⇣)Pk
ij

(k) , (6)

where P? = �

ij

� k

i

k

j

/k

2 and Pk = k

i

k

j

/k

2 are fully
solenoidal and compressive projection operators, respec-
tively, and i, j are 2 [x, y, z]. The forcing has a finite auto-
correlation time scale, T

ac

, so that it is smooth in space and
time. The forcing amplitude F0(k) is a three-dimensional
power-law function. The forcing only occurs on the large
(integral) scales 1 6 |k| 6 2, peaking at k = 1, which corre-
sponds to the box size L, as we measure k in units of 2⇡/L.
The autocorrelation time-scale of the forcing algorithm is
set equal to the dynamical time-scale T

ac

= T = L/(2csM)
and we adjust the amplitude of the forcing field, such that
the root mean square Mach number is M ⇡ 15. As one of
our goals is to study the influence of the forcing scheme, we
use the projection tensor in Fourier space to get a purely
solenoidal (divergence-free, r · F = 0) and a purely com-
pressive (curl-free, r⇥ F = 0) vector field.

We start with homogeneously distributed gas at rest
and let it evolve for ⇡ 15T dynamical time scales. The phys-
ical quantities in the simulations are scale-free so that we
define L = 1, the mean mass-density h⇢i = 1 and cs = 1.
We store the relevant quantities every 0.1T and the fluid
reaches the equilibrium state after about three turbulent
crossing times, so that we have 121 time snapshots in the
state of fully developed turbulence.

2.2 The Fourier spectra

The Fourier spectrum of the velocity field is defined as

P(k)dk = 4⇡k2v̂(k) · v̂⇤(k) dk , (7)

where v̂ is the Fourier-transformed velocity field and v̂⇤ its
complex conjugate. With this definition the integral over
the whole k-range corresponds to the square of the Mach
number,

M2 =

Z 1

0

P(k)dk , (8)
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Figure 1. Time-averaged power spectrum of the simulation with
10243 grid cells and solenoidal forcing (orange points and er-
ror bars) and three di↵erent fits (black solid, dashed and dotted
lines). The error bars correspond to the 1� time variation of the
power spectrum. All fits seem to describe the behaviour of the
data in di↵erent k ranges.

and the zero’th mode contains the averaged velocity field for
velocity components i 2 x, y, z,

hv
i

i = P
i

(0) =
1
L

3

Z 1

0

v

i

(r) d3r . (9)

In addition to the above mentioned total spectrum, we cal-
culate the spectra of the decomposed velocity field using the
same decomposition as we use for the forcing field (6) and
refer to these as the longitudinal and the transverse spectra
for the curl-free and divergence-free velocity components,
respectively.

We focus in our discussion on the analysis of the ve-
locity power spectrum as an example. It is the easiest and
most commonly used statistical measure to describe turbu-
lent flows. We note that our conclusions about the fitting
range and the comparison between our hierarchical Bayesian
approach and the standard linear regression methods hold
for the distribution of other quantities as well.

2.3 Caveats of the fitting method

In practice, when analysing numerical simulations the scal-
ing exponent is often measured by linear regression in a log-
log plot of the time-averaged power spectrum, or on a k

5/3

or k2 compensated spectrum (e.g. Kaneda et al. 2003; Krit-
suk et al. 2007; Lemaster & Stone 2009; Federrath et al.
2010). We describe in the following four common assump-
tions/methods that lead either to inaccurate scaling parame-
ter estimates, or to complications in interpreting the results.

First, in a doubly logarithmic plot it is often di�cult
to verify if the best-fit regression line accurately reproduces
the data. Many functions may appear to follow a power law
in a doubly logarithmic plot. For example, if the scaling ex-
ponent varies slightly with k, a simple linear regression in
log-space often does not reveal such fluctuations. To demon-
strate this caveat we perform three fits in slightly varying
ranges on the simulation with solenoidal forcing and 10243

grid cells (Figure 1). The resulting fitting parameters are

c� 2014 RAS, MNRAS 000, 1–10
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We will analyse the influence of the forcing field on this re-
lation in future work to test this hypothesis.

4.3 The local scaling exponents

Figure 7 shows the local scaling exponents of the density
power spectra as a function of the scale for di↵erent Mach
numbers. Recall that every point corresponds to a fit over a
range of �k = 6 such that the first points are the results of a
fit k 2 [4 : 10] centred at kc = 7. The lines connect the mean
population slope, the thick error bar corresponds to its 1�
uncertainty, and the thin error bar states the 1� variation
with time. The dashed lines indicate the results of the lower
resolution runs (5123) and the solid lines are for the higher
resolution (10243). Note that simulations with resolution of
5123 and 10243 the wave numbers above k & 16 and k & 32
are known to be dominated by numerical e↵ects (Kritsuk
et al. 2007; Federrath et al. 2010; Konstandin et al. 2012;
Bertram et al. 2015; Konstandin et al. 2015), respectively.
Therefore, we stop showing the scaling exponents for the
5123 resolution simulations for k > 28 to keep the plot read-
able and focus the interpretation in the following discussion
on wave numbers smaller than k . 32.

All local scaling exponents in Figure 7 are nearly con-
stant and only increase slightly with the scale k. This cur-
vature increases with higher Mach numbers, such that the
di↵erence between the large scale k = 7 and the intermediate
scale k ⇡ 25 local scaling exponent is ⇡ 0.3 for the M16-
1024 simulation. The low Mach number runM01 has a small
range (k 2 [7 : 18]) in which both resolutions have compa-
rable and nearly constant local scaling exponents. Whereas,
the higher Mach number runs show a resolution dependence
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Figure 7. The local scaling exponents of the density power spec-

tra as a function of the wave number k at 512

3
(dashed) and 1024

3

(solid) resolution and for di↵erent Mach numbers. The local scal-

ing exponents are the results of a Bayesian regression applied to

systematically moved fitting windows [k� 3, k+3]. The thick er-

ror bar indicates the uncertainty of the group scaling exponent

and the thin error bar states the variation of the scaling exponent

with time (see Konstandin et al. 2015, for more details).

of the local scaling exponents already on scales close to the
forcing routine, where the scaling exponents of the higher
resolution simulations are systematically smaller (⇡ 0.2)
than their lower resolution counterparts.

Our measurements are in agreement with the results of
Saichev & Woyczynski (1996) predicting a spectrum / k�2

for weak shocks and / k0 for infinitly strong shocks. For a
given resolution, all the curves of the local scaling exponent
for flows with higher M lie systematically above the ones for
lower Mach numbers, with values of about �2 for M = 1. In
the limit of weak shocks the density profile is composed of
sawtooth or step functions. Contrary, in the limit of strong
shocks the density profile is peaky with few spots contain-
ing most of the mass (i.e. delta functions, see Figure 2).
Following the ideas of Kim & Ryu (2005) our results can
be interpreted as follows. The density jump in an isother-
mal shock is proportional to the square of the Mach number
yielding very large density contrasts. Therefore, conserving
the total mass, the gas gets more concentrated in shocks
with increasing Mach number causing a more peaky den-
sity distribution. This leads to a shallower density spectrum
for the higher Mach numbers. Increasing the resolution has
the opposite e↵ect. If a simulation with high Mach num-
ber is poorly resolved most of the mass is contained in few
grid cells creating a peaky density distribution with shallow
scaling exponent. With increasing resolution substructures
get refined and mass gets distributed over more grid cells
causing a steeper density spectrum.

4.4 The influence of the Mach number and the
resolution

In the next step we quantify the influence of the resolution.
Therefore, we fit the power spectrum over an extended range
starting at the largest scale, which is not directly influenced
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by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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Table A1. Results of the three parameter fit (↵,

˜

�, !) for di↵erent estimates of the uncertainty of the local scaling exponents (first four

columns) and for di↵erent fitting ranges (fifth and sixth column).

k 2 [4 : 10]256, [4 : 17]512, [4 : 31]1024 k 2 [4 : 10]all k 2 [4 : 10]256, [11 : 17]512, [25 : 31]1024

�⇣ �t 20% ⇣ 0.15 �⇣ �⇣

↵ �1.91± 0.01 �1.85± 0.01 �1.93± 0.14 �1.90± 0.06 �1.87± 0.01 �1.88± 0.01

˜

� �0.70± 0.01 �0.65± 0.03 �0.71± 0.06 �0.69± 0.06 �0.75± 0.01 �0.60± 0.01

! 0.20± 0.01 0.19± 0.02 0.21± 0.05 0.20± 0.05 0.26± 0.01 0.11± 0.01

� �0.30± 0.03 �0.27± 0.07 �0.29± 0.16 �0.29± 0.16 �0.23± 0.03 �0.38± 0.03
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Figure A1. Scaling exponents as a function of the Mach number M for the 256

3
(cyan), 512

3
(light-green), and 1024

3
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resolution simulations. The scaling exponents are measured in varying fitting ranges as indicated in the figure. Additionally, the result

of three-parameter fit of equation (20) collected in Table A1 (columns 2, 5, 6) are shown as grey lines from left to right.
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Figure 8. Scaling exponents as a function of the Mach number,

measured in k 2 [4 : 10] for the simulations with 256

3
(cyan),

k 2 [4 : 17] for 512

3
(light-green), and k 2 [4 : 31] for 1024

3

(dark-green) resolution. The thick error bar indicates the uncer-

tainty of the group scaling exponent and the thin error bar states

the variation of the scaling exponent with time. The results of

di↵erent authors are shown with grey symbols, as stated in the

legend. Additionally, the power law fits to the 256

3
simulation

(dotted), 512

3
(dotted), and 1024

3
(solid) are also shown with

the fitting values stated in the legend.

by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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3
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3

(dark-green) resolution. The thick error bar indicates the uncer-
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the variation of the scaling exponent with time. The results of

di↵erent authors are shown with grey symbols, as stated in the

legend. Additionally, the power law fits to the 256

3
simulation

(dotted), 512

3
(dotted), and 1024

3
(solid) are also shown with

the fitting values stated in the legend.

by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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measured in k 2 [4 : 10] for the simulations with 256
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the variation of the scaling exponent with time. The results of

di↵erent authors are shown with grey symbols, as stated in the

legend. Additionally, the power law fits to the 256

3
simulation

(dotted), 512

3
(dotted), and 1024

3
(solid) are also shown with

the fitting values stated in the legend.

by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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Table A1. Results of the three parameter fit (↵,

˜

�, !) for di↵erent estimates of the uncertainty of the local scaling exponents (first four

columns) and for di↵erent fitting ranges (fifth and sixth column).

k 2 [4 : 10]256, [4 : 17]512, [4 : 31]1024 k 2 [4 : 10]all k 2 [4 : 10]256, [11 : 17]512, [25 : 31]1024

�⇣ �t 20% ⇣ 0.15 �⇣ �⇣

↵ �1.91± 0.01 �1.85± 0.01 �1.93± 0.14 �1.90± 0.06 �1.87± 0.01 �1.88± 0.01

˜

� �0.70± 0.01 �0.65± 0.03 �0.71± 0.06 �0.69± 0.06 �0.75± 0.01 �0.60± 0.01
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Figure 8. Scaling exponents as a function of the Mach number,

measured in k 2 [4 : 10] for the simulations with 256
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(dark-green) resolution. The thick error bar indicates the uncer-

tainty of the group scaling exponent and the thin error bar states

the variation of the scaling exponent with time. The results of

di↵erent authors are shown with grey symbols, as stated in the

legend. Additionally, the power law fits to the 256

3
simulation

(dotted), 512

3
(dotted), and 1024

3
(solid) are also shown with

the fitting values stated in the legend.

by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)
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by the forcing routine (k = 4), and containing a number of
points that doubles with the resolution. These ranges are
k 2 [4 : 10], k 2 [4 : 17] and k 2 [4 : 31] containing 7,
14, 28 data points for the 2563, 5123, and 10243 simulation,
respectively, which are comparable to those widely used (e.g.
Kritsuk et al. 2007; Federrath et al. 2010; Konstandin et al.
2012; Bertram et al. 2015). We follow the standard approach
in the literature and fit a power law to the spectrum. As
we see in Figure 7, the spectrum is actually slightly curved,
and we note that this introduces additional uncertainty that
we need to include in our Bayesian analysis. Therefore, we
analyse the influence of increasing the uncertainty estimate
artificially on our results as well as varying the fitting range
in the Appendix A.

Figure 8 shows the scaling exponents as a function of
the Mach number for the simulations with 2563 (cyan), 5123

(light-green), and 10243 (dark-green) resolution. Addition-
ally, we added the results of Kim & Ryu (2005) (grey circles),
Kritsuk et al. (2007) (grey square) and Kowal et al. (2007)
(grey diamonds). The data-point of Kritsuk et al. (2007)
(10243, compressive driven) is in agreement with our results,
whereas the data of Kim & Ryu (2005) (5123, solenoidal
driven) and Kowal et al. (2007) (2563, solenoidal driven,
weak magnetic field) are systematically shallower for the
highly supersonic cases. This is caused by the di↵erent forc-
ing routines and confirms the finding that solenoidal forcing
yields shallower density power spectra than mixed or com-
pressive driven ones (Federrath et al. 2009). Another rea-
son is the weak magnetic field in the simulations of Kowal
et al. (2007), which is known to flatten the spectra further
(Padoan et al. 2004).

To describe the functionality of the scaling exponent
with the Mach number, we perform a Bayesian power law

fit with two parameters ⇣(M) = ↵M� on the results with
di↵erent resolutions. We assume that ↵, �, and the error
on the measured scaling exponents are normally distributed.
The result of the regression is shown as solid (10243), dashed
(5123), and dotted (2563) black lines and parameters are
listed in the legend of Figure 8. With our value � < 0 the
model is in agreement with the theory of Saichev & Woy-
czynski (1996) as it converges towards the scaling D / k0 for
the strong shock regime M ! 1. It also recovers the weak
shock regime D / k�2 at the Mach number M = (�2/↵)1/�

and the scaling D / k�7/3 (George et al. 1984; Bayly et al.
1992) at M = (�7/3↵)1/� .

To get an estimate of this functionality in the limit of
infinite resolution, we assume a model with three parame-
ters,

⇣(M, n) = ↵M�̃+!
Pn

i=0 (1/2)i , (20)

where n is a factor corresponding to the resolution (2n 256)3

of the simulation. (TODO ...)(the resolution adds a
systematic shallower scaling expoentns) This model
uses the assumption that the influence of the resolution on
the measurement of the scaling exponent halves by doubling
the resolution, which is in agreement with our individual fits.
We perform a Bayesian model fitting the three parameters of
the scaling exponents of all resolutions simultaneously with
the result

↵ = �1.91± 0.01, �̃ = �0.70± 0.01, ! = 0.20± 0.01 . (21)

This is in agreement with our individual fits shown in Figure
8. The sum converges for n ! 1 towards 2 such that we
get in the limit of infinite resolution � = �̃ + 2!

⇣(M) = (�1.91± 0.01)M�0.30±0.03 . (22)

This is a remarkable result, as we can confirm for the first
time that the trend of shallower slopes of the density power
spectrum with increasing Mach number is independent of
the resolution.

5 DISCUSSION

5.1 The fractal dimension

In analogy to the hierarchical structure of the velocity,
characteristic for incompressible turbulence theory, von
Weizsäcker (1951) introduced a hierarchy of clouds. He pro-
posed a theory describing the density distribution of molec-
ular clouds

⇢⌫
⇢⌫�1

=

✓
`⌫

`⌫�1

◆�3�

= f�1 , (23)

where ⇢⌫ is the density of a cloud at the level of the hier-
archy ⌫, `⌫ is the size of the cloud at this level, � reflects
the degree of compression, and f is the volume filling factor.
He assumes a self similar behaviour of the density field such
that every cloud contains a certain number of smaller clouds
and so on, yielding density distributions described by equa-
tion (23). In this picture � is zero or one for no or isotropic
compression, respectively. Fleck (1996) extended the work
of von Weizsäcker (1951) and proposed a relation between
the scaling of the density and the fractal dimension D,

⇢(`) / ⇥(`)`�3� / ⇥(`)`D�3 , (24)

c� 2015 RAS, MNRAS 000, 1–12

10 L. Konstandin, W. Schmidt, P. Girichidis, T. Peters, R. Shetty, and R. S. Klessen

10

�1

10

0

10

1

10

2

10

3

1 10

e
n
e
r
g
y
i
n
j
e
c
t
i
o
n
r
a
t
e
✏

M

(1.15± 0.09)M2.91±0.03

256

3

512

3

1024

3
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number M with a power law fit. The resulting fitting parameters

are given in the figure.

di↵erent Mach numbers at once such that ↵ and � do not
depend on the Mach number and are consistent with the
measurements in Section 4.4. The additional factor k⌘ im-
proved the fit significantly such that the fit and the density
spectra are hardly distinguishable for k < 80. The fitting
parameter ⌘ describes the deviation from a pure power law,
which is nearly zero for the low Mach number simulation,
such that in this case the density power spectrum is well
described by a single power law. For the high Mach num-
ber cases the parameter ⌘ increases up to �0.04± 0.02. We
interpret the measurements of ⌘ as lower limits of the cur-
vature, as the density spectra get still steeper at small wave
numbers k ⇡ 7 with resolution, whereas their scaling ex-
ponents at intermediate scales changes only slightly with
resolution (Figure 7, or Figure A1 panel in the middle and
on the right).

Before we close this section, we want to mention that
the parametrisation of our simulations with the Mach num-
ber is arbitrary and we chose it as it is used in the derivation
of Saichev & Woyczynski (1996) and most studies of super-
sonic turbulence (e.g. Kim & Ryu 2005; Schmidt et al. 2006;
Konstandin et al. 2012). We can change the parametrisation
to any quantity that has a bijective mapping to the Mach
number. Figure 10 shows as examples the energy injection
rate of our forcing routine, which we fitted with ✏ / M2.91.
Other possibilities are the standard deviation of the den-
sity, which is �2

s = b log (1 + b2M2) (shown in Figure 6) or
the compressive Mach number as discussed in Konstandin
et al. (2012). Expressing the scaling exponent of the density
spectrum with the energy injection rate (via its influence
on the Mach number, see Figure 10) has two advantages.
First, it measures the total energy flowing through the cas-
cade as the turbulent boxes are in statistical steady state
and shows explicitly that we do not need the Mach num-
ber as additional parameter to describe a supersonic tur-
bulent flow. Hence, our results for the density spectrum of
supersonic turbulence suggest that Komogorovs second hy-
pothesis holds, which states that all small scale statistical
properties are uniquely and universally determined by the
scale ` and the mean energy dissipation rate ✏ (Kolmogorov
1941a,b). The second advantage is that it o↵ers additional
interpretations of our results.

6 SUMMARY

We analyse the properties of turbulence using a suite of
three-dimensional numerical simulations which are contin-
uously driven on the largest scales. The forcing scheme con-
sists both solenoidal (transverse) and compressive (longitu-
dinal) modes in equal parts. We model driven, compress-
ible, isothermal, turbulence with rms Mach numbers rang-
ing from the subsonic to the highly supersonic regime. We
find the relation �2

s = b log (1 + b2M2) between the Mach
number and the standard deviation of the density distribu-
tion, which improves the fit significantly. We derive this re-
lation with the shock jump condition and the Fokker-Planck
equation (Section 4.1). We find b = 0.457 ± 0.007 with the
new proposed formula describing the mixture of compres-
sive and solenoidal modes of the velocity field, which is in
agreement with our driving scheme. By employing a hier-
archical Bayesian fitting method, we estimate the param-
eters describing the scaling relation of the density power
spectrum. The density power spectra follow power laws,
D / k⇣(M), with a scaling exponent depending on the
Mach number (Section 4.4) in agreement with the theory of
Saichev & Woyczynski (1996). We find that ⇣(M) = ↵M�

with ↵ scattering slightly with resolution, whereas � gets
systematically shallower. We model that e↵ect and extrap-
olate to the limit of infinite resolution (equation 20) to find
⇣(M) = (�1.91± 0.01)M�0.30±0.03. We validate this result
by testing the influence of varying position and width of the
fitting range, as well as the uncertainty of measured scaling
exponents of the density spectrum on the inferred parame-
ters (Appendix A).

The dependence of the scaling exponent on the aver-
age Mach number of the density spectrum implies a depen-
dence of the fractal dimension on the Mach number (Sec-
tion 5.1). In the proposed model the fractal dimension is
D = 2�1/2 ⇣(M) = 2+0.96M�0.30. The fractal dimension
is D = 2 in the strong shock regime and D = 3 in the incom-
pressible limit, which is reached at the critical Mach number
Mcrit ⇡ 0.86. This is in agreement with the observations of
Elmegreen & Falgarone (1996, and references therein) sug-
gesting an overall fractal dimension of interstellar clouds in
the range D ⇡ 2.0� 2.7.

We also determine how the parameters depend on the
wavenumber and quantify the deviation from a pure power
law by moving the fitting range systematically over the den-
sity spectrum (Section 4.3). This analysis reveals that the
density power spectra are slightly curved. This curvature
gets more pronounced with increasing Mach number. The
density spectra are steeper close to the forcing scale, shal-
low at intermediate scales and again steeper on small scales.
The height of this bump in the local scaling exponents in-
creases with the Mach number.

We develop a physically motivated fitting formula re-
producing the deviations from a pure power law based
on the Mach number dependence of the scaling exponent
of the density power spectrum (Section 5.2). We propose
D(k) = D0k

⇣k⌘
with ⇣ = ↵M� and a new parameter ⌘ de-

scribing the deviation of the spectrum from a pure power law
with fixed scaling exponent. This functionality describes all
density spectra down to wave numbers of k ⇡ 80. We mea-
sure ⌘ = �0.005 ± 0.01 in the low Mach number regime
such that in this case the density power spectrum follows
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and

�2
⇢ = exp (�2

s)� 1 . (10)

Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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s/2 (9)
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to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
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parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
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relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.
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dard deviation of the density distribution and the Mach
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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(Risken 1996; Baudoin 2014). An equivalent description of
the process can be achieved by expressing the random vari-
able itself in a stochastic di↵erential equation instead of the
time evolution of its PDF

ds = B1(s, t)dt+B2(s, t)dW , (14)

with the random process dW . Following the idea of Pas-
sot & Vázquez-Semadeni (1998) and Federrath et al. (2008)
we assume B1 = 0 and B2

2 = log (1 + b2M2) in equation
(14), which describes the density fluctuations as random
process caused by the shocks. With this ansatz the Fokker-
Planck equation has no stationary distribution. Instead we
get with the initial values t0 and s0 and the initial condition

p(s; t0|s0; t0) = �(s� s0)

p(s; t|s0; t0) =
1p

2⇡(t� t0)�s

exp

✓
� (s� s0)

2

2�2
s(t� t0)

◆
, (15)

which is the dispersion relation of a Brownian motion. This
is expected as the model does not contain the redistribution
of the mass according to the hydrodynamical equations. In
the next step we assume that the pressure di↵erence be-
tween the ambient/average pressure µp and the pressure
p of the di↵erent positions of the medium relaxes the gas
compressed by the shocks. We express the pressure term
⇢�1rp = c2srs ⇡ c2s(s� µs) and make the ansatz

B1(s(t)) = �1/⌧↵(s� µs) B2
2 = 1/⌧� log (1 + b2M2) ,

(16)
with the e�ciency parameter 1/⌧↵ and 1/⌧� for the di↵er-
ent processes, which will be determined later. Equation (14)
reads then

ds(t) = �(s�µs)/⌧↵dt+
p

(log (1 + b2M2)/⌧�)dW , (17)

which is a Ornstein-Uhlenbeck process (Pope 2000; Baudoin
2014) describing the non equilibrium evolution of the density
field.

The stationary solution with ansatz (16) can be calcu-
lated with the Fokker-Planck equation (13), which gives

p(s, t|s0, t0) = N (µs, �
2
s) , (18)

a normal distribution with mean µs and squared standard
deviation �2

s = ⌧↵/2⌧� log (1 + b2M2) in agreement with
the theories of Passot & Vázquez-Semadeni (1998) and
Federrath et al. (2008) besides the prefactor ⌧↵/2⌧� . The
timescale ⌧↵ associated with the pressure term can be inter-
preted as the time for redistributing shocked and diluted gas
and ⌧� is the timescale associated with the shocks occurring
during the time dt. We express the timescale of the pressure
term with the dynamical timescale ⌧↵ = L/2M. Whereas we
estimate the shock frequency with two times the compressive
Mach number ⌧� = L/4Mc as only the longitudinal part of
the velocity field contributes to advecting flows, however it
counts twice for opposed shock fronts. Therefore we end up
with ⌧↵/2⌧� = b such that

�2
s = b log (1 + b2M2) . (19)

Figure 6 presents �2
s as a function of the Mach numberM for

the simulations at di↵erent resolutions. Also shown are the
relations proposed by Passot & Vázquez-Semadeni (1998)
and Federrath et al. (2008), both fitting the data for M < 4,
but significantly overestimate �2

s in the high Mach num-
ber regime. We measure with these models b = 0.24 ± 0.01
(�s = bM) and b = 0.27 ± 0.06 (�2

s = log (1 + b2M2))
limiting the fitting range to M < 4. These measurements
are slightly smaller than b = 1/3 proposed for purely
solenoidal forcing. In contrast the fit of relation (19) is in
agreement with the data for all Mach numbers. We mea-
sure b = 0, 472 ± 0.002, 0.459 ± 0.005, 0, 457 ± 0.007 for
2563, 5123, 10243 resolution respectively. This result is in
agreement with the constrains provided by observations
b ⇡ 0.4� 0.5 (Brunt 2010; Kainulainen & Tan 2013; Kainu-
lainen et al. 2013; Ginsburg et al. 2013). The new proposed
model could also explain the measurements of Konstandin
et al. (2012), who found strong deviations from equation (11)
for purely solenoidal forcing (b ⇡ 1/3), whereas no discrep-
ancies where found for purely compressive forcing (b ⇡ 1).

c� 2015 RAS, MNRAS 000, 1–12

6 L. Konstandin, W. Schmidt, P. Girichidis, T. Peters, R. Shetty, and R. S. Klessen

0

0.5

1

1.5

2

0 0.5 1 1.5 2

�
2 s

�2µs

256

3

512

3

1024

3

�2

s

= �2µ
s

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5

�
2

⇢

�2

s

256

3

512

3

1024

3

�2

⇢

= exp (�2

s

)� 1

Figure 5. Relation between the moments of the density field

assuming a log-normal distribution. Top panel: Mean of the log-

arithmic density s versus its squared standard deviation together

with equation (9). Bottom panel: Squared standard deviations of

the density ⇢ and the logarithmic density s together with equation

(10).

(Risken 1996; Baudoin 2014). An equivalent description of
the process can be achieved by expressing the random vari-
able itself in a stochastic di↵erential equation instead of the
time evolution of its PDF

ds = B1(s, t)dt+B2(s, t)dW , (14)

with the random process dW . Following the idea of Pas-
sot & Vázquez-Semadeni (1998) and Federrath et al. (2008)
we assume B1 = 0 and B2

2 = log (1 + b2M2) in equation
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2�2
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◆
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which is the dispersion relation of a Brownian motion. This
is expected as the model does not contain the redistribution
of the mass according to the hydrodynamical equations. In
the next step we assume that the pressure di↵erence be-
tween the ambient/average pressure µp and the pressure
p of the di↵erent positions of the medium relaxes the gas
compressed by the shocks. We express the pressure term
⇢�1rp = c2srs ⇡ c2s(s� µs) and make the ansatz

B1(s(t)) = �1/⌧↵(s� µs) B2
2 = 1/⌧� log (1 + b2M2) ,

(16)
with the e�ciency parameter 1/⌧↵ and 1/⌧� for the di↵er-
ent processes, which will be determined later. Equation (14)
reads then

ds(t) = �(s�µs)/⌧↵dt+
p

(log (1 + b2M2)/⌧�)dW , (17)

which is a Ornstein-Uhlenbeck process (Pope 2000; Baudoin
2014) describing the non equilibrium evolution of the density
field.

The stationary solution with ansatz (16) can be calcu-
lated with the Fokker-Planck equation (13), which gives

p(s, t|s0, t0) = N (µs, �
2
s) , (18)

a normal distribution with mean µs and squared standard
deviation �2

s = ⌧↵/2⌧� log (1 + b2M2) in agreement with
the theories of Passot & Vázquez-Semadeni (1998) and
Federrath et al. (2008) besides the prefactor ⌧↵/2⌧� . The
timescale ⌧↵ associated with the pressure term can be inter-
preted as the time for redistributing shocked and diluted gas
and ⌧� is the timescale associated with the shocks occurring
during the time dt. We express the timescale of the pressure
term with the dynamical timescale ⌧↵ = L/2M. Whereas we
estimate the shock frequency with two times the compressive
Mach number ⌧� = L/4Mc as only the longitudinal part of
the velocity field contributes to advecting flows, however it
counts twice for opposed shock fronts. Therefore we end up
with ⌧↵/2⌧� = b such that

�2
s = b log (1 + b2M2) . (19)

Figure 6 presents �2
s as a function of the Mach numberM for

the simulations at di↵erent resolutions. Also shown are the
relations proposed by Passot & Vázquez-Semadeni (1998)
and Federrath et al. (2008), both fitting the data for M < 4,
but significantly overestimate �2

s in the high Mach num-
ber regime. We measure with these models b = 0.24 ± 0.01
(�s = bM) and b = 0.27 ± 0.06 (�2

s = log (1 + b2M2))
limiting the fitting range to M < 4. These measurements
are slightly smaller than b = 1/3 proposed for purely
solenoidal forcing. In contrast the fit of relation (19) is in
agreement with the data for all Mach numbers. We mea-
sure b = 0, 472 ± 0.002, 0.459 ± 0.005, 0, 457 ± 0.007 for
2563, 5123, 10243 resolution respectively. This result is in
agreement with the constrains provided by observations
b ⇡ 0.4� 0.5 (Brunt 2010; Kainulainen & Tan 2013; Kainu-
lainen et al. 2013; Ginsburg et al. 2013). The new proposed
model could also explain the measurements of Konstandin
et al. (2012), who found strong deviations from equation (11)
for purely solenoidal forcing (b ⇡ 1/3), whereas no discrep-
ancies where found for purely compressive forcing (b ⇡ 1).
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and

�2
⇢ = exp (�2

s)� 1 . (10)

Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and

�2
⇢ = exp (�2

s)� 1 . (10)

Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and

�2
⇢ = exp (�2

s)� 1 . (10)

Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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the shocks can be interpreted as an additive random process
changing the logarithmic density s = log (⇢). Arguing with
the central limit theorem they propose a normal distribution
for the logarithmic density s and a log-normal distribution
for the density. The moments of these distributions are con-
nected via

µ⇢ = exp (µs + �2
s/2) (7)

for the mean and

�2
⇢ = µ2

⇢(exp (�
2
s)� 1) (8)

for the standard deviation. We choose the parameters of the
simulations in this way that the box size L = 1, the total
volume V = 1 and the total mass M = 1 such that µ⇢ = 1
implyies

µs = ��2
s/2 (9)

and

�2
⇢ = exp (�2

s)� 1 . (10)

Hopkins (2013) developed a model for the density dis-
tribution taking mass conservation and intermittent fluctu-
ations into account with a non log-normal shape in order
to explain the deviations from the relations between the
moments seen in 3-dimensional numerical simulations (e.g.
Kowal et al. 2007; Kritsuk et al. 2007; Schmidt et al. 2009;
Price & Federrath 2010; Federrath et al. 2010; Konstandin
et al. 2012; Molina et al. 2012). In this model the deviations
from the log-normal shape can be expressed by a single pa-
rameter T , with T = 0 for a log-normal distribution.

Figure 4 shows the PDF of s measured in the simula-
tions with 10243 resolution and at di↵erent Mach numbers
together with normal distributions depending only on one
parameter �s. We express the mean of the normal distri-
butions with equation (9). The normal distributions are in
excellent agreement with the measured PDFs also in the
wings of the distributions. We show the relations (9) and
(10) between the moments in Figure 5 to quantify the dis-
crepancy between the log-normal assumption and our simu-
lations. Our data show only negligible deviations from both
relations indicating that our density PDFs are closer to a
log-normal shape than the ones analysed by Hopkins (2013).
Therefore, we find a T parameter scattering around zero
(e.g. T = �0.0003 ± 0.0003 in the simulation M15-10243)
for all Mach numbers, which we calculated with the relation
between the moments and the T parameter given in equation
(6) of Hopkins (2013). The main di↵erence between the sim-
ulations presented here and these in Federrath et al. (2008)
and Konstandin et al. (2012) is the decomposition of the
forcing scheme. We use a here a forcing field, which contains
both solenoidal (transverse) as well as compressive (longitu-
dinal) modes in equal parts, whereas the above mentioned
studies focus on the the extreme cases of purely solenoidal
and purely compressive forcing.

4.2 The �s-M relation

In the next step we analyse the relation between the stan-
dard deviation of the density distribution and the Mach
number of the turbulent flow. Passot & Vázquez-Semadeni
(1998) concluded from the shock jump condition and the
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central limit theorem that the standard deviation of the log-
arithmic density �s ⇡ bM with the proportionality constant
b. This leads to �⇢ ⇡ �s ⇡ bM when Taylor expanding
equation (10) to first order. Federrath et al. (2008) analysed
the influence of di↵erent forcing fields on the relation

�2
s = log (1 + b2M2) . (11)

They assume a linear relation between the standard devia-
tion of the density field and the Mach number (Padoan et al.
1997) and use equation (10) to express the standard devia-
tion of the logarithmic density. They found 0 6 b 6 1 de-
pending on the decomposition of the forcing with b = 1/3 for
purely solenoidal forcing and b = 1 for purely compressive.
This parameter b can be interpreted as the ratio between the
compressive Mach number over the total rms Mach number
of the flow (Konstandin et al. 2012)

b =
Mc

M . (12)

The longitudinal modes of the velocity field contain collid-
ing and dispersing flows, which cause density fluctuations,
whereas the transverse modes have no influence.

The jump condition ⇢(ti+1) = ⇢(ti)M2 indicates that
we have to express the PDF at the time ti+1 conditioned on
the past time p(⇢(ti+1)| ⇢(ti)). A stochastic processes is said
to be Markovian, if the system only depends on the state
of the previous time step, but not on those before. As the
shock jump condition suggests this behaviour, we will use
the Fokker-Planck transport equation for random variables,

@

@t
p(s; t) = � @

@s
[B1(s; t)p(s; t))] +

1
2

@2

@s2
[B2

2(s; t)p(s; t)] .

(13)
with the drift parameter B1(s, t) and the di↵usion coe�-
cient B2(s, t) to determine the steady state of the PDF of s
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(Risken 1996; Baudoin 2014). An equivalent description of
the process can be achieved by expressing the random vari-
able itself in a stochastic di↵erential equation instead of the
time evolution of its PDF

ds = B1(s, t)dt+B2(s, t)dW , (14)

with the random process dW . Following the idea of Pas-
sot & Vázquez-Semadeni (1998) and Federrath et al. (2008)
we assume B1 = 0 and B2

2 = log (1 + b2M2) in equation
(14), which describes the density fluctuations as random
process caused by the shocks. With this ansatz the Fokker-
Planck equation has no stationary distribution. Instead we
get with the initial values t0 and s0 and the initial condition

p(s; t0|s0; t0) = �(s� s0)

p(s; t|s0; t0) =
1p

2⇡(t� t0)�s

exp

✓
� (s� s0)

2

2�2
s(t� t0)

◆
, (15)

which is the dispersion relation of a Brownian motion. This
is expected as the model does not contain the redistribution
of the mass according to the hydrodynamical equations. In
the next step we assume that the pressure di↵erence be-
tween the ambient/average pressure µp and the pressure
p of the di↵erent positions of the medium relaxes the gas
compressed by the shocks. We express the pressure term
⇢�1rp = c2srs ⇡ c2s(s� µs) and make the ansatz

B1(s(t)) = �1/⌧↵(s� µs) B2
2 = 1/⌧� log (1 + b2M2) ,

(16)
with the e�ciency parameter 1/⌧↵ and 1/⌧� for the di↵er-
ent processes, which will be determined later. Equation (14)
reads then

ds(t) = �(s�µs)/⌧↵dt+
p

(log (1 + b2M2)/⌧�)dW , (17)

which is a Ornstein-Uhlenbeck process (Pope 2000; Baudoin
2014) describing the non equilibrium evolution of the density
field.

The stationary solution with ansatz (16) can be calcu-
lated with the Fokker-Planck equation (13), which gives

p(s, t|s0, t0) = N (µs, �
2
s) , (18)

a normal distribution with mean µs and squared standard
deviation �2

s = ⌧↵/2⌧� log (1 + b2M2) in agreement with
the theories of Passot & Vázquez-Semadeni (1998) and
Federrath et al. (2008) besides the prefactor ⌧↵/2⌧� . The
timescale ⌧↵ associated with the pressure term can be inter-
preted as the time for redistributing shocked and diluted gas
and ⌧� is the timescale associated with the shocks occurring
during the time dt. We express the timescale of the pressure
term with the dynamical timescale ⌧↵ = L/2M. Whereas we
estimate the shock frequency with two times the compressive
Mach number ⌧� = L/4Mc as only the longitudinal part of
the velocity field contributes to advecting flows, however it
counts twice for opposed shock fronts. Therefore we end up
with ⌧↵/2⌧� = b such that

�2
s = b log (1 + b2M2) . (19)

Figure 6 presents �2
s as a function of the Mach numberM for

the simulations at di↵erent resolutions. Also shown are the
relations proposed by Passot & Vázquez-Semadeni (1998)
and Federrath et al. (2008), both fitting the data for M < 4,
but significantly overestimate �2

s in the high Mach num-
ber regime. We measure with these models b = 0.24 ± 0.01
(�s = bM) and b = 0.27 ± 0.06 (�2

s = log (1 + b2M2))
limiting the fitting range to M < 4. These measurements
are slightly smaller than b = 1/3 proposed for purely
solenoidal forcing. In contrast the fit of relation (19) is in
agreement with the data for all Mach numbers. We mea-
sure b = 0, 472 ± 0.002, 0.459 ± 0.005, 0, 457 ± 0.007 for
2563, 5123, 10243 resolution respectively. This result is in
agreement with the constrains provided by observations
b ⇡ 0.4� 0.5 (Brunt 2010; Kainulainen & Tan 2013; Kainu-
lainen et al. 2013; Ginsburg et al. 2013). The new proposed
model could also explain the measurements of Konstandin
et al. (2012), who found strong deviations from equation (11)
for purely solenoidal forcing (b ⇡ 1/3), whereas no discrep-
ancies where found for purely compressive forcing (b ⇡ 1).
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with the e�ciency parameter 1/⌧↵ and 1/⌧� for the di↵er-
ent processes, which will be determined later. Equation (14)
reads then
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which is a Ornstein-Uhlenbeck process (Pope 2000; Baudoin
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field.

The stationary solution with ansatz (16) can be calcu-
lated with the Fokker-Planck equation (13), which gives

p(s, t|s0, t0) = N (µs, �
2
s) , (18)

a normal distribution with mean µs and squared standard
deviation �2

s = ⌧↵/2⌧� log (1 + b2M2) in agreement with
the theories of Passot & Vázquez-Semadeni (1998) and
Federrath et al. (2008) besides the prefactor ⌧↵/2⌧� . The
timescale ⌧↵ associated with the pressure term can be inter-
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during the time dt. We express the timescale of the pressure
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estimate the shock frequency with two times the compressive
Mach number ⌧� = L/4Mc as only the longitudinal part of
the velocity field contributes to advecting flows, however it
counts twice for opposed shock fronts. Therefore we end up
with ⌧↵/2⌧� = b such that
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Figure 6 presents �2
s as a function of the Mach numberM for

the simulations at di↵erent resolutions. Also shown are the
relations proposed by Passot & Vázquez-Semadeni (1998)
and Federrath et al. (2008), both fitting the data for M < 4,
but significantly overestimate �2

s in the high Mach num-
ber regime. We measure with these models b = 0.24 ± 0.01
(�s = bM) and b = 0.27 ± 0.06 (�2

s = log (1 + b2M2))
limiting the fitting range to M < 4. These measurements
are slightly smaller than b = 1/3 proposed for purely
solenoidal forcing. In contrast the fit of relation (19) is in
agreement with the data for all Mach numbers. We mea-
sure b = 0, 472 ± 0.002, 0.459 ± 0.005, 0, 457 ± 0.007 for
2563, 5123, 10243 resolution respectively. This result is in
agreement with the constrains provided by observations
b ⇡ 0.4� 0.5 (Brunt 2010; Kainulainen & Tan 2013; Kainu-
lainen et al. 2013; Ginsburg et al. 2013). The new proposed
model could also explain the measurements of Konstandin
et al. (2012), who found strong deviations from equation (11)
for purely solenoidal forcing (b ⇡ 1/3), whereas no discrep-
ancies where found for purely compressive forcing (b ⇡ 1).
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