

Think Global, Act Local: HI in (and around) the Milky Way

NAOMI MCCLURE-GRIFFITHS Australian National University

Circum-Galactic Medium

Stars

Circum-Galactic Medium

How do galaxies work?

Stars

Figure by Josh Peek

Circum-Galactic Medium

How does MW interact with the circumgalactic medium?

Figure courtesy Josh Peek

Multi-phase gas-loss from galaxies

M82. Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA)

MW HI GSH277+00+36: McClure-Griffiths et al. (2003)

Cool HI halo structure

GALFA examples:

Stanimirovic et al. (2006) Begum et al (2010) Saul et al (2012)

7

(Lack-of) HI in the Galactic Centre

HI entrained in a Galactic wind

Models of nuclear outflows

- Improve estimates of:
 - opening angle and velocity (fig) - cloud lifetime - entrained mass

Where do they go and what are their properties?

Lockman, Harrington, McG, Ford et al

Circum-Galactic Medium

Gas circulation? Infall?

Figure courtesy Josh Peek

A deceptive view of the HI sky?

 $3.2 \times 10^8 M_{\odot}$ HI halo (Marasco & Fraternali 2010)

Putman, Peek, & Joung (2012 ARA&A); Westmeier (2007); LAB data

reservoir of <10¹⁸ cm⁻² HI gas? significant optically thick HI?

HI Halo: Wide vs Deep

- Deep HI obs (Lockman et al 2002) compared with wide (Moss et al 2013)
- Ratio of dense to diffuse gas is: 0.2 - 0.8, consistent with lots of "undetected" HI (Moss et al, 2015)

Multi-phase high-velocity gas

HVCs as barometers

"Cold" cores: FWHM ~7 km/s, "Warm" envelopes: FWHM ~20 km/s

 20 - 24 % of HVC sight-lines have multi-phase structure (Moss et al 2013, Kalberla & Haud 2006)

And ...

Multiphase Magellanic Steam clouds shouldn't

- Whiat as the kpc
 (Stapierizeture etfathe
 gas? 2009)
- What other forces play a role?
 - magnetic fields?

Accretion in action?

- MS travelling at ~380 km/s (Kallivayelli et al 06), P_{ram} >10^{2.5} K cm⁻³
- Survival time ~150
 Myr, travel 16 kpc
 (Putman et al 11)

B-fields and HVCs

ΗI

- HVC in Leading Arm of Magellanic System
 - Head-tail morphology

Rotation Measures & HVC HI Emission

 $\langle B_{\parallel} \rangle = 3.8 \times 10^{18} \langle RM_{HVC} \rangle / N_{\rm HII}$

- Average electron density from Hα WHAM-South upper limit and Si II and Si II abs lines (Shull et al 09)
- Given NH_{II} < 4 x 10^{19} cm⁻² and <RM_{HVC}>~55 rad m⁻²
- → B_{\parallel} > 6 µG (towards us)

30 GLAT (degrees) 35 (0) 47 'on source' RMs Median on: -8.2+/-28 rad/m² Median off: -48.9+/-36 rad/m² 80 295 290 285 GLON (degrees)

McClure-Griffiths et al (2010)

RM > 0

RM < 0

Magnetic field in the Smith Cloud?

Hill et al (2013)

Summary

- Taking full multi-phase ISM into the halo:
 - Gaseous outflows in the Milky Way are multiphase
 - Galactic centre outflow evacuated HI cavity inside R_g<2.5 kpc
 - However, HI clouds of ~20-30 pc entrained in wind
 - The high velocity HI halo is devious
 - undetected diffuse HI
 - "multi-phase" clouds often shouldn't exist
 - magnetic fields
- How to make progress:
 - Better measurements of temperature (HI absorption?)
 - More metallicities
 - Census of role of magnetic fields

Next steps...

Galactic ASKAP Survey (GASKAP)

Aim: To study the evolution of the Milky Way and Magellanic Clouds through their interstellar gas and star formation

Surveys of the Galactic plane and Magellanic System:

- HI λ21-cm emission and absorption
- OH λ18-cm diffuse emission and absorption
- OH λ18-cm masers
 More than order
 of magnitude
 more sensitive

Dickey, McClure-Griffiths et al (2013)

GASKAP + POSSUM

Nidever+10