### The Role of Cloud Cloud Collisions in High mass Star Formation

Asao HABE

Elizabeth J. Tasker, Kazuhiro Shima, Ken Takahira

(Hokkaido University, Japan)

## outline

1

- $\cdot$  motivation
- recent observational evidence of cloud cloud collision
- $\cdot\,$  collision time scale estimation
- $\cdot \,$  our numerical simulation



### **Recent Cloud Collision Observation Papers**

CO(J=2-1) and infrared images of NGC3603

- Furukawa+ 2009
- Kang + 2010
- Ohama+ 2010
- Torii + 2011
- Nakamura + 2012
- Fukui + 2014,
- Higuchi +2014
- Torii + 2015,
- Tsuboi+2015



#### Cloud Cloud Collision evidence in Spitzer bubbles

partial arc-like structures of 8 micron and off-center star formation regions

two velocity components of CO with  $\Delta v \sim 20$  km/s





## cloud cloud collision rate ? • two estimations of collision time scale of GMCs a) $\tau_{col} \sim 240 Myr$ for random clouds with $\sigma_{cloud} \sim 10 km/s$ e.g. McLeod 2012 b) $\tau_{col} \sim 10 - 30 Myr$ from GMCs simulations of galaxy scale Tasker and Tan 09, Tasker 11 Fujimoto et al. 14ab, Dobbs et al. 15



in our Galaxy ( Tan 2000)

Small

7613

14.4

24.47

10.4

2.62

480

5-12

Takahira et al. (14, 15)

- Turbulent clouds (Larson) collisions
- 3D Hydrodynamic AMR code (ENZO)
- High resolution:
- Radiative cooling
- Self-gravity

# **Cloud Model**

 $T_{\rm BE} [\rm K]$ 

 $k_{min}, k_{max}$ 

10

9

|                            | $M_c \left[ M_{\odot} \right]$ |
|----------------------------|--------------------------------|
| $Small = 7613 M_{\odot}$   | $r_c  [ m pc]$                 |
| $Medium = 14935 M_{\odot}$ | $\bar{n}  [\mathrm{cm}^{-3}]$  |
| $Large = 26722 M_{\odot}$  | $t_{\rm ff}  [{\rm Myr}]$      |
|                            | $\sigma_v ~[{ m km/s}]$        |

collision velocity

 $v_{col} = 5, 10, 20, 30 km/s$ 







Medium

14935

20.9

15.94

13.0

3.17

720

10-19



Large

26722

28.0

11.86

15.0

3.57

960

10-25



Habe & Ohta (92)

**Our Simulation** 

#### Probability Density Function (PDF) turbulent clouds (before collision) 10 black line : $t = 0.2 t_{ff}$ 100 red dotted line : t = t\_ff ractional gas volume 10-2 10 blue line : log normal form ( supersonic turbulence PDF) 10-10-4 $f(\rho) = \frac{A}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\ln(\rho/\bar{\rho}) - \mu)^2}{2\sigma^2}\right)$ log ρ (g/cm^3) Padoan + 1997, Federrath + 2008 П







## summary

- · turbulent clouds collisions with v = 5 30 km/s
- · partial arc-like structure (Spitzer bubbles)
- $\cdot$  core mass function limited to  $M>10M_{\odot}$  with power index  $\alpha=1.6\sim2.3$  for v>10km/s
- massive cores with accretion rate  $\dot{M} > 10^{-4} M_{\odot}/yr$ (McKee & Tan 2004)
- our results support CCCs have the important role in high mass star formation

#### 15