The star formation law in Tidal Dwarf Galaxies

Ute Lisenfeld Universidad de Granada (Spain)

In collaboration with: Jonathan Braine Pierre-Alain Duc Mederic Boquien Elias Brinks Frederic Bournaud Federico Lelli Vassilis Charmandaris

The star formation law

- How do stars form from gas?
 →Compare (molecular) gas mass and star formation rate.
- For spirals, the molecular gas depletion time (=M_{H2}/SFR = SFE⁻¹) is ≈ 2 Gyr (Leroy+08, Bigiel +08,11), shorter for starbursts (e.g. Genzel+10,Daddi10).
- What is the physical cause of this relation?
- Study diverse objects/ environments
- Search for deviations from "normal" KS-law

The SF law on the faint end

- Low surface brightness galaxies (Wyder+09): Low SFR/MHI (but no CO detected) most likely due to a low molecular gas fraction.
- Outer spirals disks (Schruba+11): SFR/M_{HI} is low
 - Stacking CO \rightarrow M_{H2}/M_{HI} is low
 - SFR/M_{H2} is the same as in the inner disk
 - →Molecular gas formation is low at outer radii, but SF from molecular gas is normal
- <u>Dwarf galaxies</u>: Problem: M_{H2} hard to measure because Xfactor is not well known for low metallicity.
- Here we study Tidal Dwarf Galaxies (TDGs) for the following reasons.....

Tidal Dwarf Galaxies

- Form out of gas and stellar debris at the end of tidal tails.
- Gaseous and stellar properties: similar to classical dwarf irregular and blue compact dwarfs, except

....their high metallicity

→typical of outer regions of spiral galaxies: 12+log(O/H) ≈ 8.4-8.6

➔ do not follow luminosity-metallicity relation

.... and their low dark matter content:

- Predicted from simulations (e.g. Barnes & Hernquist 1992)
- M_{dyn}/M_{vis} ≈ 1 (Bournaud et al. 2003, Lelli et al. 2015, in 6 TDGs in 3 systems)

NGC 4694 and VCC 2062

- Situated at the outskirts of the Virgo
 Cluster → close-by
 (D = 17 Mpc)
- NGC 4694 and VCC 2062 have same recession velocity.
- NGC 4694: SB0 peculiar
- VCC 2062: very low surface brightness dwarf galaxy (µ_v = 25.5 mag/"²)

Combined u,g,i image from the NGVS (Next Generaltion Virgo cluster Survey, Ferrarese et al. 2012)

NGC 4694 and VCC 2062

- Stellar bridge between both galaxies -> evidence that VCC 2062 is physically related to NGC 4694
- NGC 4694 is distorted and assymetric -> old merger

Deep g-band image from the NGVS (New Generation Virgo Survey, Ferrarese et al. 2012)

Optical and HI (blue)

SF regions in the tail

Dynamical mass from HI kinematics

Analysis of the HI kinematics (Lelli et al. 2015)

VLA HI data (resolution 14.7"x14.3")

Model HI disk adopting PA, i , v_{sys} , flat rotation curve (V_{rot}, R_{out}) and fit to the HI data

Good fit, with residual HI (most likely tail material).

Derive dynamical mass, and compare to baryonic mass $M_{bar} = M_{gas} + M_{star}$

-> $M_{dyn}/M_{bar} = 1.0 \pm 0.9$ -> Consistent with no dark matter !!

-> Strong evidence that VCC 2062 is a TDG

CO(1-0) observations with PdBI

- Observations done in C and B conf.
- Original resolution 3.22"x • 2.37" (≈300pc)

10°58'40'' Beam 4.3"x 4.1" 0.4 NE clouds Jy 10°58'20'' Dec (J2000.0) 0.2 10°58'00' SW clouds 0 Southern cloud 10055740 Beam 7.7"x 6.4" **NE clouds** 10°58'20'' Dec (J2000.0) (J2000.0) (J2000.0) 0. SW clouds 0 Southern cloud Velocity integrated CO(1-0) emission '40" L 48^m00^s 47^m58^s

Comparison to HI

- NE clouds coincides with peak of HI
- SW cloud is between the two HI peaks
- CO is less extended than HI
- Kinematics of CO and HI agree where they overlay.

Comparison to star formation

- Good coincidence between CO and SF tracers in NE region
- Weaker SF in SW region (but present, see 8µm)

Measure SFR

- Integrate SF tracers in the same apertures as CO
- Use different tracers (Hα, UV, 8/24μm, 8/24μm+ Hα/UV)
- Apply standard conversion from luminosities to SFR (Kennicut & Evans 2012)

- Modelling of UV-optical-IR SED with CIGALE for the entire galaxy.
 - Present SFR =3 10⁻³ Msun yr⁻¹
 - Averaged SFR (past 10⁸ yr) = 4.5 10⁻³ Msun yr⁻¹
 - Total stellar mass = 7 10⁶ Msun

UV/optical/NIR SED and CIGALE model

Molecular gas and SF

- Recent SF tracers (Hα, 8/24µm) give low
 Σ_{SFR} compared to Σ_{H2}.
- Especially low in region SW
- Long term SF tracer are more in agreement with SFE of spiral galaxies.

Why is SFE so low?

Low gas surface density?

- VCC 2062 has:
 - low surface brightness: μ_v =25.5 mag/"²)
 - low stellar mass surface density:
 1 Msun pc⁻²
 - low gas surface density: Σ_{gas} ≈ 6 Msun pc⁻²)
 - At these low surface densities, $\Sigma_{\text{SFR}}/\Sigma_{\text{gas}}$ decreases usually but also $M_{\text{H2}}/M_{\text{HI}}$

Leroy+2008, SFE in THINGS galaxies

VCC 2062 does have considerable molecular gas, with M_{H2}/M_{gas} ≈ 50%
 → molecular gas to form stars is present.

Why is SFE so low?

Decreasing SFR:

- CIGALE fitting: SFR(average 10^8 yr) ≈ 1.5 x present SFR
- Consistent with low SFR(H α)/SFR(UV)
- ➔ Non equilibrium situation; few massive stars compared to continuous SFR for which indicators are calibrated.

Low SFR (≈10⁻³ Msun yr⁻¹)

- <u>S</u>tochastic sampling of IMF \rightarrow few O stars are being formed
- Difference in expected L(Hα) can be factor of 2 for SFR < 10⁻³ Msun yr⁻¹ (Cerviño 2003, Cerviño & Luridiana 2004)

Does orbital time play a role?

Gas consumption for star formation is about 10% per orbital time.

Does orbital time play a role?

- VCC 2062 has a long τ_{orb} (1.2x10⁹ yr) due to lack of dark matter
- Gas consumption per orbit is \approx 10%, as in spiral galaxies.
- BUT: What could be physical cause?
 - VCC 2062 is different from other TDGs.

→ In general (except of VCC 2062) reasonable agreement with relation found by Bigiel et al. (2008).

Summary

- TDGs are interesting objects to study the SF law, because of:
 - High metallicity -> CO is a good tracer of the molecular gas
 - Low dark matter content -> different conditions
- VCC 2062 is an old, nearby TDG with a large data set
- Interferometric observations of the molecular gas together with the measurement of the SFR from different tracers a low SFE for VCC 2062. Possible reasons are:
 - Decling SFR in the past
 - Short orbital time
- For other TDGs with CO the SFE is similar to that in spiral galaxies.