DISK-CORONA GAS CYCLE IN SIMULATED MILKY WAY-LIKE GALAXIES

Antonino Marasco
Kapteyn Astronomical Institute, Groningen, the Netherlands

In collaboration with:
Victor P. Debattista
Filippo Fraternali
Thijs van der Hulst
James Wadsley
Thomas Quinn
Rok Roskar

Life cycle of gas in galaxies, ASTRON, 2015
GAS ACCRETION ONTO HALOS

Cold vs hot mode of gas accretion (e.g., Keres+05,09)
GAS ACCRETION ONTO HALOS

Cold vs hot mode of gas accretion (e.g., Keres+05,09)

$M_{DM\,halo} < 10^{11.4} M_\odot$

High redshift
GAS ACCRETION ONTO HALOS

Cold vs hot mode of gas accretion (e.g., Keres+05,09)

$M_{DM\,halo} < 10^{11.4} \, M_\odot$

High redshift

$M_{DM\,halo} > 10^{11.4} \, M_\odot$

Low redshift

Coronae in MW like galaxies:

- $T \sim T_{vir}$ (few 10^6 K)
- Extended hundreds of kph
- Low metallicity

see Fukugita & Peebles 2006
GAS ACCRETION ONTO HALOS

Cold vs hot mode of gas accretion (e.g., Keres+05,09)

\[M_{\text{DM\,halo}} < 10^{11.4} M_\odot \quad \text{High redshift} \]

\[M_{\text{DM\,halo}} > 10^{11.4} M_\odot \quad \text{Low redshift} \]

Transition at \(z \sim 2 \)

The MW corona had fed our Galaxy continuously in the last 10 Gyr!

Coronae in MW like galaxies:
- \(T \sim T_{\text{vir}} \) (few \(10^6 \) K)
- Extended hundreds of kph
- Low metallicity

see Fukugita & Peebles 2006
IS THERE A CORONA AROUND THE MW?
IS THERE A CORONA AROUND THE MW?

Putman et al. 2011
IS THERE A CORONA AROUND THE MW?

Putman et al. 2011

Spekkens et al. 2014
IS THERE A CORONA AROUND THE MW?

Putman et al. 2011

van Woerden et al. 2004

Spekkens et al. 2014

Mastropietro et al. 2009
IS THERE A CORONA AROUND THE MW?

Putman et al. 2011

Spekkens et al. 2014

Mastropietro et al. 2009

van Woerden et al. 2004

See Gurtina Besla’s talk
SIMULATION SETUP

Code: GASOLINE (SPH; Wadsley+04)
SIMULATION SETUP

Code: GASOLINE (SPH; Wadsley+04)

DM halo
- NFW
- $r_{200} = 200$ kpc
- $M_{\text{vir}} = 10^{12}$ Mo
- $m_{\text{DM}} = 10^6$ Mo
SIMULATION SETUP

Code: GASOLINE (SPH; Wadsley+04)

DM halo
- NFW
- $r_{200} = 200$ kpc
- $M_{\text{vir}} = 10^{12}$ Mo
- $m_{\text{DM}} = 10^6$ Mo

Hot gas
- 10% of M_{tot}
- No metals
- hydro equilibrium
- $\lambda = 0.065$
- $m_{\text{gas}} = 1.4\times10^5$ Mo
SIMULATION SETUP

Code: GASOLINE (SPH; Wadsley+04)

DM halo
- NFW
- \(r_{200} = 200 \text{ kpc} \)
- \(M_{\text{vir}} = 10^{12} \text{ Mo} \)
- \(m_{\text{DM}} = 10^6 \text{ Mo} \)

Hot gas
- 10% of \(M_{\text{tot}} \)
- No metals
- hydro equilibrium
- \(\lambda = 0.065 \)
- \(m_{\text{gas}} = 1.4 \times 10^5 \text{ Mo} \)

Radiative cooling (Shen+10)
- \(\rho, T \) and \(Z \) dependent
SIMULATION SETUP

Code: GASOLINE (SPH; Wadsley+04)

DM halo
- NFW
- $r_{200} = 200$ kpc
- $M_{\text{vir}} = 10^{12}$ Mo
- $m_{\text{DM}} = 10^6$ Mo

Hot gas
- 10% of M_{tot}
- No metals
- hydro equilibrium
- $\lambda = 0.065$
- $m_{\text{gas}} = 1.4 \times 10^5$ Mo

Radiative cooling (Shen+10)
- ρ, T and Z dependent

Star formation (Stinson+06)
- $n > 0.1$ cm$^{-3}$
- $T < 15000$ K
- converging flow
- Miller-Scalo IMF
SIMULATION SETUP

Code: GASOLINE (SPH; Wadsley+04)

DM halo
- NFW
- \(r_{200} = 200 \) kpc
- \(M_{\text{vir}} = 10^{12} \) Mo
- \(m_{\text{DM}} = 10^6 \) Mo

Hot gas
- 10\% of \(M_{\text{tot}} \)
- No metals
- hydro equilibrium
- \(\lambda = 0.065 \)
- \(m_{\text{gas}} = 1.4 \times 10^5 \) Mo

Radiative cooling (Shen+10)
- \(\rho, T \) and \(Z \) dependent

Star formation (Stinson+06)
- \(n > 0.1 \) cm\(^{-3}\)
- \(T < 15000 \) K
- converging flow
- Miller-Scalo IMF

Stellar feedback (Stinson+06)
- SN feedback (thermal, blast-wave)
- \(E_{\text{SN}} \) as a free parameter
- stellar winds (\(\sim 25\% \))
FACE-ON MAPS

cold gas

stars

10 kpc

log(N(H,HI,cm^{-2})

log(Σ([M/Σ(pc)]))
<table>
<thead>
<tr>
<th></th>
<th>F80</th>
<th>F40</th>
<th>F10</th>
<th>F2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>2.9x10^9</td>
<td>2.5x10^9</td>
<td>2.4x10^9</td>
<td>2.5x10^9</td>
</tr>
<tr>
<td>Mo</td>
<td>5.8x10^10</td>
<td>5.9x10^10</td>
<td>6.1x10^10</td>
<td>6.2x10^10</td>
</tr>
</tbody>
</table>

FACE-ON MAPS

- **Cold Gas**
 - F80: 2.9x10^9 Mo
 - F40: 2.5x10^9 Mo
 - F10: 2.4x10^9 Mo
 - F2.5: 2.5x10^9 Mo

- **Stars**
 - 5.8x10^10 Mo
 - 5.9x10^10 Mo
 - 6.1x10^10 Mo
 - 6.2x10^10 Mo
MASS DISTRIBUTION AND KINEMATICS

- Surface density ($M_{\odot} \cdot pc^{-2}$)
 - F80: 10^{-5}
 - F40: 10^{-4}
 - F10: 10^{-3}
 - F2.5: 10^{-2}

- Rotation velocity (km/s)
 - F80: 10^0
 - F40: 10^5
 - F10: 10^10
 - F2.5: 10^15

- Radius [kpc]
 - F80: 0, 5, 10, 15
 - F40: 0, 5, 10, 15
 - F10: 0, 5, 10, 15
 - F2.5: 0, 5, 10, 15

- Milky Way
 - Sofue et al. (2009), rescaled
MASS DISTRIBUTION AND KINEMATICS

- Surface density (\(M_\odot\cdot pc^{-2}\))
- Rotation velocity (km/s)
- Lookback time [Gyr]

STAR FORMATION HISTORY

- Aumer and Binney 2009
- Fraternali and Tomassetti 2012

- SFR [\(M_\odot/yr\)]
MASS DISTRIBUTION AND KINEMATICS

STAR FORMATION HISTORY

Aumer and Binney 2009
Fraternali and Tomassetti 2012

SFR\text{SIM} \sim 4 \text{ M}_\odot/\text{yr}
SFR_{\text{MW}} \sim 2-3 \text{ M}_\odot/\text{yr}
MASS DISTRIBUTION AND KINEMATICS

- Surface density (M\textsubscript{☉} pc-2)
- Rotation velocity (km/s)
- Radius [kpc]

STAR FORMATION HISTORY

- SFR \textsubscript{SIM} \sim 4 M\textsubscript{☉}/yr
- SFR\textsubscript{MW} \sim 2-3 M\textsubscript{☉}/yr

- Aumer and Binney 2009
- Fraternali and Tomassetti 2012

Note: The image contains graphs and data plots related to mass distribution, kinematics, and star formation history in the context of the Milky Way.
MASS DISTRIBUTION AND KINEMATICS

STAR FORMATION HISTORY

Accretion rates in good agreement with cosmological simulations (e.g. Brook+14)

SFR$_{\text{SIM}} \sim 4$ Mo/yr
SFR$_{\text{MW}} \sim 2-3$ Mo-yr
The effect of feedback

The cold gas scale-height increases with feedback.
The cold gas scale-height increases with feedback.
The cold gas scale-height increases with feedback.
EXTRA-PLANAR HI

\[\frac{M_{\text{HI}(>1\text{kpc})}}{M_{\text{HI, tot}}} = 0.3 \] (see Marasco & Fraternali 2011)

\[\frac{M_{\text{HI}(>1\text{kpc})}}{M_{\text{HI, tot}}} = 0.05 \] (Marasco et al. 2015)
EXTRA-PLANAR HI

\[\frac{M_{\text{HI}(>1\text{kpc})}}{M_{\text{HI, tot}}} = 0.3 \]

NGC 891
(Oosterloo et al. 2007)

\[\frac{M_{\text{HI}(>1\text{kpc})}}{M_{\text{HI, tot}}} = 0.05 \]

Simulation
(Marasco et al. 2015)

(see Marasco & Fraternali 2011)
EXTRA-PLANAR HI

NGC 891
(Oosterloo et al. 2007)

Simulation
(Marasco et al. 2015)

\[
\frac{M_{\text{HI}(>1\text{kpc})}}{M_{\text{HI},\text{tot}}} = 0.3
\]

\[
\frac{M_{\text{HI}(>1\text{kpc})}}{M_{\text{HI},\text{tot}}} = 0.05
\]

(see Marasco & Fraternali 2011)
EXTRA-PLANAR HI: KINEMATICS

F80, velocity distribution at the disc-corona interface

![Graph showing velocity distribution](image-url)
EXTRA-PLANAR HI: KINEMATICS

F80, velocity distribution at the disc-corona interface

Velocity drop caused by hydrodynamical interaction with coronal gas (see Fraternali & Binney 2008)
CIRCUMGALACTIC MEDIUM

![Graph showing the relationship between logarithmic density (log(n[atoms/cm^3])) and temperature (log(temperature[K])) against distance from the centre (kpc). The graph is divided into radial and vertical views.](image)
CIRCUMGALACTIC MEDIUM

Distance from the centre [kpc] vs. log(n[atoms/cm³]) and log(temperature[K])

- Radial distribution
- Vertical distribution

Temperature intervals:
- log(T)<4.3 (cold)
- 4.3<log(T)<5.3 (warm)
- 5.3<log(T)<5.8 (hot)
- log(T)>5.8 (all gas)
CIRCUMGALACTIC MEDIUM

-7 -6 -5 -4 -3 -2 -1 0

4 4.5 5 5.5 6 6.5 7

log(T)<4.3 (cold)
4.3<log(T)<5.3 (warm)
5.3<log(T)<5.8 (hot)
log(T)>5.8
all gas

log(n[atoms/cm^3])

vertical

H I C II Si III Mg II

Si III Si IV C IV

O VI

Si III Si IV C IV

O VI

Si III Si IV C IV

Si III Si IV C IV

Si III Si IV C IV

distance from the centre [kpc]

1 10 100 1000

log(temperature[K])

CIRCUMGALACTIC MEDIUM

-7
-1
-2
-3
-4
-5
-6
-1

log(n[atoms/cm^3])

log(temperature[K])

log(T)<4.3 (cold)
4.3<log(T)<5.3 (warm)
5.3<log(T)<5.8 (hot)
log(T)>5.8
all gas

SiIII SiIV CIV
H I CII SiII MgII
radial

SiIII SiIV CIV

OVI

SiIII SiIV CIV

OVI

vertical

distance from the centre [kpc]
1
10
100
1000

4
4.5
5
5.5
6
6.5
7

4
4.5
5
5.5
6
6.5
7
CIRCUMGALACTIC MEDIUM

![Diagram showing the distribution of gas in different temperature regimes as a function of distance from the center of the galaxy. The diagram plots log(n[atoms/cm³]) on the y-axis and log(temperature[K]) on the x-axis. Different temperatures are indicated by color-coded regions: log(T)<4.3 (cold), 4.3<log(T)<5.3 (warm), 5.3<log(T)<5.8 (hot), log(T)>5.8 (all gas). The gas distribution is shown both radially and vertically.]

- Logarithmic temperature regimes:
 - Log(T)<4.3 (cold)
 - 4.3<log(T)<5.3 (warm)
 - 5.3<log(T)<5.8 (hot)
 - Log(T)>5.8 (all gas)

See Tumlinson+13, Werk+13,14.
CIRCUMGALACTIC MEDIUM

tentative conclusion:
cold-warm absorptions in the halo trace either late-type cold mode accretion or interaction with satellites

see Tumlinson+13, Werk+13,14
A model of pure hot-mode mass assembly predicts the following:

<table>
<thead>
<tr>
<th>Property</th>
<th>comparison with the MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star formation rate</td>
<td>within a factor of 2</td>
</tr>
<tr>
<td>Star formation history</td>
<td>✓</td>
</tr>
<tr>
<td>Mass distribution</td>
<td>✓ (but not in the centre)</td>
</tr>
<tr>
<td>Kinematics</td>
<td>✓ (but not in the centre)</td>
</tr>
<tr>
<td>Extra-planar gas</td>
<td>✓✓ (if feedback is large)</td>
</tr>
<tr>
<td>Hot absorbers in halo</td>
<td>✓</td>
</tr>
<tr>
<td>Warm absorbers in the halo</td>
<td>✗</td>
</tr>
<tr>
<td>Cold absorbers in the halo</td>
<td>✗</td>
</tr>
</tbody>
</table>
CONCLUSIONS

A model of pure hot-mode mass assembly predicts the following:

<table>
<thead>
<tr>
<th>Property</th>
<th>comparison with the MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star formation rate</td>
<td>within a factor of 2</td>
</tr>
<tr>
<td>Star formation history</td>
<td>✓</td>
</tr>
<tr>
<td>Mass distribution</td>
<td>✓ (but not in the centre)</td>
</tr>
<tr>
<td>Kinematics</td>
<td>✓ (but not in the centre)</td>
</tr>
<tr>
<td>Extra-planar gas</td>
<td>✓✓ (if feedback is large)</td>
</tr>
<tr>
<td>Hot absorbers in halo</td>
<td>✓</td>
</tr>
<tr>
<td>Warm absorbers in the halo</td>
<td>✗</td>
</tr>
<tr>
<td>Cold absorbers in the halo</td>
<td>✗</td>
</tr>
</tbody>
</table>

Future plan: larger feedback, interaction with satellites