Will we ever detect gas accretion?

(Facts, opinions, puzzles & questions)

Filippo Fraternali

Department of Physics and Astronomy, University of Bologna, Italy Kapteyn Astronomical Institute, University of Groningen, NL

Filippo Fraternali (Bologna/Groningen)

In this talk

Why gas accretion?

- 1. Can we detect it in HI emission?
- 2. Can we detect it in absorption?
- 3. Theoretical expectations
- 4. Have your say!

Why gas accretion?

Filippo Fraternali (Bologna/Groningen)

Milky Way evidence

Filippo Fraternali (Bologna/Groningen)

Cosmology evidence

Assembly of stellar mass in the Universe

Gas depletion time ~ 1 Gyr

Saintonge+ 15 Kennicutt+83, Genzel+ 10, Bigiel+11, Genzel+15

Filippo Fraternali (Bologna/Groningen)

Cosmology evidence

Filippo Fraternali (Bologna/Groningen)

Detection of gas accretion

Filippo Fraternali (Bologna/Groningen)

Detect gas accretion

Needed:

- 1. Mass gas around (M_{in, gas})
- 2. Evidence for infall
- 3. Timescale of infall (t_{in})

Accretion rate (dM/dt)_{acc} ~ M_{in,gas}/t_{in}

Filippo Fraternali (Bologna/Groningen)

Genuine (?) HI clouds

Sancisi, Fraternali+ 2008, A&ARv

Filippo Fraternali (Bologna/Groningen)

Will we ever see gas accretion - Dwingeloo, 1/11/2015

M31 clouds

Filippo Fraternali (Bologna/Groningen)

NGC891 filament

200 hrs with WSRT

Z (HI) ~ Z_{\odot} Bregman et al. 2013, ApJ

Will we ever see gas accretion - Dwingeloo, 1/11/2015

Chynoweth et al. 2009, Haynes et al. 2011

Filippo Fraternali (Bologna/Groningen)

Filippo Fraternali (Bologna/Groningen)

HI High Velocity Clouds

Typical distances: ~10 kpc $Z \sim 0.1 - 0.5 Z_{\odot}$ $M \sim < 10^7 M_{\odot}$ Accretion from HVCs \swarrow ~ 0.08 M_{\odot}/yr Includes He and factor 2 of ionised gas! Putman, Peek, Joung 2012, ARA&A

Origin not clear

condensed gasComplex C produced-Cold front (IVC-like)by a superbubbleImage: Cold front (IVC-like)that triggered theImage: Cold front (IVC-like)cooling of the corona

Filippo Fraternali (Bologna/Groningen)

Several galaxies without large HVCs

Filippo Fraternali (Bologna/Groningen)

Accretion rates

Let's assume that they are genuine accreting clouds $M_{cloud,HI} \sim 10^7 M_{\odot}$ $R \sim 10 \text{ kpc}$ $t_{acc} > 10 \text{ kpc } / 100 \text{ km/s}$ $\sim 10^8 \text{ yr}$ $M_{acc,HI} \sim < 0.1 M_{\odot}/\text{yr}$

Puzzle: why is HI accretion missing?

Possible solutions:

- 1. Assume most gas is ionised
- 2. Postulate many clouds under detection limit
- 3. or hidden

Will we ever see gas accretion - Dwingeloo, 1/11/2015

Filippo Fraternali (Bologna/Groningen)

First questions

- 1. Why is HI accretion missing?
- 2. Why are all the *clouds* closeby?
- 3. What's their origin?

Filippo Fraternali (Bologna/Groningen)

Will we ever see gas accretion - Dwingeloo, 1/11/2015

Absorption studies

Filippo Fraternali (Bologna/Groningen)

It's not easy to see accretion

Redshifted ISM absorptions

Filippo Fraternali (Bologna/Groningen)

PI: Jason Tumlinson134 orbits with HST/COS44 galaxies

COS-Halos

0.14 < z < 0.35

Ly alpha – cold gas (T ~ 1-3 10^4 K)

Filippo Fraternali (Bologna/Groningen)

Filippo Fraternali (Bologna/Groningen)

Metallicity vs N_{HI}

16 < Log N_{HI} < 19 : Bimodality

Filippo Fraternali (Bologna/Groningen)

Absorbers around the MW

Filippo Fraternali (Bologna/Groningen)

More questions

- 1. Why is HI accretion missing?
- 2. Why are all clouds closeby?
- 3. What's their origin?
- 4. Why is **inflow** generally not seen?
- 5. What are the COS-Halos *cold* absorbers?
- 6. How do they survive, do they accrete?
- 7. Why Z bimodality in absorbers?

Theoretical expectations

Filippo Fraternali (Bologna/Groningen)

Hot and cold modes

Classical theory

- Gas falls into a dark matter halos
- Shock heats to the virial temperature
- Quasi-hydrostatic equilibrium corona cools inside-out and settle into a disk

Modern revision

- In small halos gas does not thermalize
- Falls in *cold* filaments
- Rapid collapse and disk formation

Binney 1977, Katz+ 2002, Dekel & Birnboim 2003, Keres+ 2005

Filippo Fraternali (Bologna/Groningen)

Cold mode

High z, large halos

Nearby cold flows?

26^s

780

750

720 -

26^s

Filippo Fraternali (Bologna/Groningen)

Filippo Fraternali (Bologna/Groningen)

Filippo Fraternali (Bologna/Groningen)

Questions/puzzles

Accretion in what form?

- 1. Cold gas clouds/filaments (T< 10^5 K) directly from the IGM
 - 1. Mostly neutral
 - 2. Mostly ionized
- 2. Cooling of a hot corona (T_{vir}) Spontaneous or induced?
- 3. Drizzle?
- 4. Minor mergers??
- 5. Outer discs, just flowing in

- 1. Why is HI accretion missing?
- 2. Why are all clouds closeby?
- 3. What's their origin?
- 4. Why is inflow generally not seen?
- 5. What are the COS-Halos *cold* absorbers?
- 6. How do they survive, do they accrete?
- 7. Why Z bimodality in absorbers?
- 8. Can we see cold mode at z=0?
- 9. Why coronae have low masses? Can they cool efficiently?

Ostriker & Binney 1989, Jiang & Binney 1999

NGC 5907 302 15^h15^m00^s α (2000.0)

Very common Garcia-Ruiz+ 2001

But gas is needed for star formation in the central parts!

Galaxy discs should act as accretion discs (?) Forbes+ 12, Golbaum+ 15

Is this distinguishable from satellite accretion?

Will we ever see gas accretion - Dwingeloo, 1/11/2015

Filippo Fraternali (Bologna/Groningen)

Galaxy pairs in HI

WHISP catalogue: ~150 datacubes

Filippo Fraternali (Bologna/Groningen)

Filippo Fraternali (Bologna/Groningen)