

The dark gas in the Milky Way

Helga Dénes | OCE Post doctoral researcher 1 September 2015

ASTRONOMY AND SPACE SCIENCE www.csiro.au

The gas cycle in galaxies

http://soral.as.arizona.edu

How much extra gas is there?

 Plank dust measurements
Dust indicates more gas, than what we see in the HI and CO observation

The dark gas in the Milky Way | Helga Dénes

(CO) dark gas

- + Grenier et al. 2005:
 - Excess dust emission compared to the detected HI and CO
 - + More gas indicated by gamma rays

(CO) dark gas

✦ Dark gas in the Chamaeleon molecular cloud complex

+ Based on Fermi gamma ray measurements

What is the (CO)dark gas?

- Fukui et al. (2014) compared Planck dust optical depth with HI column density towards a high latitude molecular clouds.
 - 85% of the data points have HI optical depths τ > 0.5 and HI spin temperature (T_s) < 40 K.
 - Suggest that the local interstellar medium (ISM) may be dominated by the high optical depth HI.
- Stanimirovic et al. (2014) and Lee et al (2015) measured HI absorption around the nearby Perseus molecular cloud
 - **High optical depth** τ > 0.5 was only observed towards **20**% of the detected HI Gaussian components.

Inside the clouds

Measuring gas temperatures

$$T_{s}(v) = \frac{T_{B}(v)}{(1 - e^{-\tau(v)})}$$

The Riegel-Crutcher cloud

✦HI absorption cloud

- ✦Discovered by Heeschen (1955)
- ✦Towards the galactic center
 - ✦Bright background emission
 - +v = 5 km/s
 - +Distance: 125 pc
 - ✦Thickness 1-5 pc (6 km/s)
 - highly filamentary tendrils
 - Filaments align with the magnetic field
 - ★small amount of detected ¹²CO emission

McClure-Griffiths et al. (2006)

Previous temperature estimations

McClure-Griffiths et al. (2006)

- Interpolating the HI emission
 - estimating the temperature:
 - ~40 K (Montgomery et al. 1995; McClure-Griffith et al. 2006)

Temperatures with absorption lines

- + 47 NVSS background continuum sources
- + S > 200 mJy
- + Unresolved (< 45'')
- ✦ Observed for 100 minutes with ATCA

Fitting spectra

- + 47+ sources
- ✦ Using Gausspy the Autonomous Gaussian Decomposition (Lindtner et al. 2015)

Preliminary results

Temperatures $\sim 50 - 160$ K Optical depth (τ) $\sim 0.8 - 1.08$

- ✦Measuring the temperature of gas clouds can help us understand how much of the (CO) dark gas is HI and how much is H₂.
- ✦Preliminary results show that the gas in the Rigel-Crutcher cloud has temperatures between 50 160K, and suggest a temperature gradient.
- ✦Future plans
 - +Derive temperatures and column densities for the whole cloud
 - +Compare results to simulations
 - +Measure temperatures in other regions (molecular clouds)

Thank you

CSIRO CASS Helga Dénes OCE post doctoral researcher

E Helga.Denes@csiro.au

