GMC Populations of Nearby Galaxies

Andreas Schruba, MPE for Annie Hughes, IRAP

PAWS: Adam Leroy, Dario Colombo, Eva Schinnerer, Sharon Meidt, Jerome Pety, Clare Dobbs, Gaelle Dumas, Todd Thompson, Santi Garcia-Burillo, Carsten Kramer, Karl Schuster CANON: Jin Koda, Jen Donovan-Meyer, M31: Andreas Schruba MAGMA: Tony Wong, Juergen Ott

Motivation

Milky Way's molecular mass is ~ 2 x10⁹ M_{\odot} n ~ 100 cm⁻³ \Rightarrow t_{ff} ~ 4 x 10⁶ yr \Rightarrow SFR ~ 500 M_{\odot} yr⁻¹! Observed SFR is 0.7 to 1.5 M_{\odot} yr⁻¹

Explanation depends on whether GMCs are:

- bound + long-lived
- unbound + short-lived
- collapsing + short-lived

e.g. Krumholz & McKee (2005)

e.g. Dobbs et al (2011)

e.g. (Ballesteros-Paredes et al. (2011)

A Resolved Extragalactic SF 'Law'

This Talk

Do the properties of a GMC population depend on host galaxy properties?

Do galaxy properties & processes influence GMC formation and evolution?

Do GMC properties matter for star formation (on galactic scales)?

NGC253: Leroy M31: Schruba NGC4526: Utomo CANON: Donovan-Meyer M33: Druard, Gratier, Braine NGC6822: Gratier IC342: Hirota M83: Hirota

MAGMA LMC

PdBl M5 I

Are GMC Properties Universal?

Confirmation from Local Group GMCs?

Bolatto et al 2008

"GMCs identified on the basis of their CO emission exhibit remarkably uniform properties from galaxy to galaxy..."

But...

Some observational evidence that GMC dynamical properties (e.g. mass, linewidth) may depend on galactic environment

IC342

CARMA-STING

+ clear evidence for mass evolution through spiral arms

e.g. Koda ea (2009), Egusa ea (2011)

Size-linewidth relation: M51, M33, LMC

this 'correlation' largely due to resolution effects

Decomposition applied to CO data cubes with their original spatial and spectral resolution

Data points cluster around the resolution limits

Scaling relations obtained from composite samples must be interpreted with caution: beware observational bias

Size-linewidth relation: M51, M33, LMC

R-Lco relation: Nearby Galaxies

size-luminosity N6946 log(Lco/[K km/s pc²]) M33 6 **LMC** 4 ₩ N4826 🔷 M51 arm 2 M51 interarm 100 10 Radius [pc]

Within M51, slope and normalisation of size-luminosity relationship varies

<Σ> at fixed scale also varies between galaxies

difference in $\langle \Sigma \rangle$ between spiral and dwarf galaxies (factor of ~10) exceeds X_{CO} variations (factor of ~2 to 3)

Extragalactic Larson Relations at 50pc

 $<\sigma$ >/R and Σ of GMCs vary with galactic environment

A consequence of external pressure?

$$\frac{M}{R^2} \simeq 190 \pm 90 \left(\frac{P_e}{10^4 \ k_{\rm B} \ {\rm cm}^{-3} \ {\rm K}} \right)^{1/2} M_{\odot} \ {\rm pc}^{-2} ,$$

$$\frac{c}{R^{12}} \simeq 0.4 \pm 0.1 \left(\frac{P_e}{10^4 \ k_{\rm B} \ {\rm cm}^{-3} \ {\rm K}} \right)^{1/4} \ {\rm km \ s}^{-1} \ {\rm pc}^{-1/2}$$

e.g. Elmegreen (1989)

➡ if P_{int}~P_{ext}, environment more
likely to influence cloud stability,
dense gas mass function, star
formation activity, GMC evolution...

$$P_{ext} = \frac{\pi G}{2} \Sigma_g \left(\Sigma_g + \frac{\sigma_g}{\sigma_*} \Sigma_* \right)$$

How is Molecular Gas in Galaxies Distributed?

GMC Mass Distributions: Motivations

- diagnostic of GMC formation & destruction processes
- potential link to core mass function and cluster IMF
- in inner MW, $\gamma = -1.5 \implies$ GMCs dominate total H₂ mass

PAWS Survey of M51: Dynamical environments defined in Colombo et al (2014)

GMC Mass Spectra: M51 environments

GMC & Young Cluster Properties

GMC Mass Spectra: Nearby Galaxies

GMC Mass Distributions: Trends

shape of GMC mass distribution is not universal: slope and turnover mass increase in more massive systems

Do GMC properties matter for star formation (on galactic scales)?

Star Formation: Theory

In star formation theory, the SFR depends on the properties of the parent cloud

- cloud properties act as the boundary conditions for small scale star formation
- turbulent cloud properties set the density distribution
- Mach number sets the width of density distribution

e.g. Krumholz & McKee 2005, Padoan & Nordlund 2011, Hennebelle & Chabrier 2011, Federrath & Klessen 2012,

Star Formation in Local Clouds

In local clouds, SFR relates to high density gas, not total H₂

- YSOs found in regions of high column density and extinction
- Actively SF clouds show excess amounts of high extinction material
- SF appears closely associated with dense filamentary substructure

Kainulainen et al (2009), Lada et al (2010), Heiderman et al (2010), Arzoumanian et al (2011), Stutz et al (2015)

Extragalactic Star Formation

mass

stella

ncreasing

log(H₂ Surface Density)

SFR-per-H₂ varies (systematically) on large scales in local galaxies

- High SFR/CO in galaxy centres, luminous starbursts, low-metallicity dwarfs
- Low SFR/CO in ETGs
- SFR/CO shows variations with local gas kinematics, galaxy morphology and metallicity

Schruba et al (2011), Saintonge et al (2011), Davis et al (2014), Meidt et al (2013), Koda et al (2009), Leroy et al (2013), Gao & Solomon (2004), Huang et al (2015)

GMC Properties and Star Formation

Schinnerer et al (2013), Pety et al (2013)

x offset [kpc]

-2

2

offset [kpc]

For simplicity, we write TIR/CO: overall SFE in H₂ HCN/CO: dense gas fraction TIR/HCN: SFE of dense gas

Measure TIR/CO, SFR/HCN, or HCN/CO ratio in a ~kpc aperture that is small enough to

roughly isolate local conditions.

Integration over a ~kpc area is needed to capture the timecycling of gas and stars

GMC Properties and Star Formation

Within the ~kpc aperture, measure the typical cloud-scale properties of the molecular gas, e.g. mass-weighted surface density, velocity dispersion (Mach number), and gravitational boundedness

Underlying GMC Properties Matter

Within the PAWS field-of-view, the ability of the ISM to form stars (IR/CO) correlates with the self-gravity of the gas at cloud (50 pc) scales – gas that is more bound appears better at forming stars.

Underlying GMC Properties Matter

Within the PAWS field-of-view, the average small scale surface density within a kpc region correlates with the apparent fraction of the molecular gas mass that is dense.

Underlying GMC Properties Matter

But higher cloud-scale surface densities are associated with lower ratios of star formation per unit dense gas! I.e. dense gas is worse at forming stars as overall ISM density increases

Summary

GMC physical properties and mass distributions vary with environment, both within and among galaxies

More massive systems tend to have denser, more turbulent GMCs, and tend to build more massive GMCs

In M51, relations between star formation, molecular gas and dense gas are qualitatively consistent with a "whole cloud" view in which star formation occurs in local overdensities (rather than a universal density threshold)

